Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 33(3): 844-864, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35296883

RESUMEN

Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models. Reduced NSM activity resulted in enhanced alcohol consumption in males, but delayed conditioned rewarding effects. It enhanced the acute dopamine response to alcohol, but decreased monoaminergic systems adaptations to chronic alcohol. Reduced NSM activity increased depression- and anxiety-like behavior, but was not involved in alcohol use for the self-management of the emotional state. Constitutively reduced NSM activity impaired structural development in the brain and enhanced lipidomic sensitivity to chronic alcohol. While the central effects were mostly opposite to NSM function in females, similar roles in bone-mediated osteocalcin release and its effects on alcohol drinking and emotional behavior were observed. These findings support the view that the NSM and multiple downstream mechanism may be a source of the sex-differences in alcohol use and emotional behavior.


Asunto(s)
Emociones , Esfingomielina Fosfodiesterasa , Masculino , Ratones , Animales , Femenino , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Consumo de Bebidas Alcohólicas , Ansiedad/metabolismo , Encéfalo/metabolismo , Etanol
2.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928357

RESUMEN

Cannabidiol (CBD), a phytocannabinoid, appeared to satisfy several criteria for a safe approach to preventing drug-taking behavior, including opioids. However, most successful preclinical and clinical results come from studies in adult males. We examined whether systemic injections of CBD (10 mg/kg, i.p.) during extinction of oxycodone (OXY, 3 mg/kg, i.p.) induced conditioned place preference (CPP) could attenuate the reinstatement of CPP brought about by OXY (1.5 mg/kg, i.p.) priming in adolescent rats of both sexes, and whether this effect is sex dependent. Accordingly, a priming dose of OXY produced reinstatement of the previously extinguished CPP in males and females. In both sexes, this effect was linked to locomotor sensitization that was blunted by CBD pretreatments. However, CBD was able to prevent the reinstatement of OXY-induced CPP only in adolescent males and this outcome was associated with an increased cannabinoid 1 receptor (CB1R) and a decreased mu opioid receptor (MOR) expression in the prefrontal cortex (PFC). The reinstatement of CCP in females was associated with a decreased MOR expression, but no changes were detected in CB1R in the hippocampus (HIP). Moreover, CBD administration during extinction significantly potentialized the reduced MOR expression in the PFC of males and showed a tendency to potentiate the reduced MOR in the HIP of females. Additionally, CBD reversed OXY-induced deficits of recognition memory only in males. These results suggest that CBD could reduce reinstatement to OXY seeking after a period of abstinence in adolescent male but not female rats. However, more investigation is required.


Asunto(s)
Cannabidiol , Oxicodona , Receptor Cannabinoide CB1 , Receptores Opioides mu , Animales , Cannabidiol/farmacología , Masculino , Femenino , Oxicodona/farmacología , Ratas , Receptor Cannabinoide CB1/metabolismo , Receptores Opioides mu/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Analgésicos Opioides/farmacología , Condicionamiento Psicológico/efectos de los fármacos
3.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256113

RESUMEN

Children with fetal alcohol spectrum disorders (FASDs) demonstrate deficits in social functioning that contribute to early withdrawal from school and delinquency, as well as the development of anxiety and depression. Dopamine is involved in reward, motivation, and social behavior. Thus, we evaluated whether neonatal ethanol exposure (in an animal model of FASDs) has an impact on social recognition memory using the three-chamber social novelty discrimination test during early and middle adolescence in male and female rats, and whether the modafinil analog, the novel atypical dopamine reuptake inhibitor CE-123, can modify this effect. Our study shows that male and female rats neonatally exposed to ethanol exhibited sex- and age-dependent deficits in social novelty discrimination in early (male) and middle (female) adolescence. These deficits were specific to the social domain and not simply due to more general deficits in learning and memory because these animals did not exhibit changes in short-term recognition memory in the novel object recognition task. Furthermore, early-adolescent male rats that were neonatally exposed to ethanol did not show changes in the anxiety index but demonstrated an increase in locomotor activity. Chronic treatment with CE-123, however, prevented the appearance of these social deficits. In the hippocampus of adolescent rats, CE-123 increased BDNF and decreased its signal transduction TrkB receptor expression level in ethanol-exposed animals during development, suggesting an increase in neuroplasticity. Thus, selective dopamine reuptake inhibitors, such as CE-123, represent interesting drug candidates for the treatment of deficits in social behavior in adolescent individuals with FASDs.


Asunto(s)
Compuestos de Bencidrilo , Trastornos del Espectro Alcohólico Fetal , Interacción Social , Humanos , Adolescente , Niño , Embarazo , Femenino , Masculino , Animales , Ratas , Etanol/efectos adversos , Inhibidores de Captación de Dopamina , Dopamina
4.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768263

RESUMEN

Treatment of Post-Traumatic Stress Disorder (PTSD) is complicated by the presence of drug use disorder comorbidity. Here, we examine whether conditioned fear (PTSD model) modifies the rewarding effect of mephedrone and if repeated mephedrone injections have impact on trauma-related behaviors (fear sensitization, extinction, and recall of the fear reaction). We also analyzed whether these trauma-induced changes were associated with exacerbation in metalloproteinase-9 (MMP-9) and the GluN2A and GluN2B subunits of N-methyl-D-aspartate (NMDA) glutamate receptor expression in such brain structures as the hippocampus and basolateral amygdala. Male adolescent rats underwent trauma exposure (1.5 mA footshock), followed 7 days later by a conditioned place preference training with mephedrone. Next, the post-conditioning test was performed. Fear sensitization, conditioned fear, anxiety-like behavior, extinction acquisition and relapse were then assessed to evaluate behavioral changes. MMP-9, GluN2A and GluN2B were subsequently measured. Trauma-exposed rats subjected to mephedrone treatment acquired a strong place preference and exhibited impairment in fear extinction and reinstatement. Mephedrone had no effect on trauma-induced MMP-9 level in the basolateral amygdala, but decreased it in the hippocampus. GluN2B expression was decreased in the hippocampus, but increased in the basolateral amygdala of mephedrone-treated stressed rats. These data suggest that the modification of the hippocampus and basolateral amygdala due to mephedrone use can induce fear memory impairment and drug seeking behavior in adolescent male rats.


Asunto(s)
Miedo , N-Metilaspartato , Animales , Masculino , Ratas , Extinción Psicológica , Metaloproteinasa 9 de la Matriz/metabolismo , N-Metilaspartato/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Mol Psychiatry ; 26(12): 7403-7416, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34584229

RESUMEN

Mental disorders are highly comorbid and occur together with physical diseases, which are often considered to arise from separate pathogenic pathways. We observed in alcohol-dependent patients increased serum activity of neutral sphingomyelinase. A genetic association analysis in 456,693 volunteers found associations of haplotypes of SMPD3 coding for NSM-2 (NSM) with alcohol consumption, but also with affective state, and bone mineralisation. Functional analysis in mice showed that NSM controls alcohol consumption, affective behaviour, and their interaction by regulating hippocampal volume, cortical connectivity, and monoaminergic responses. Furthermore, NSM controlled bone-brain communication by enhancing osteocalcin signalling, which can independently supress alcohol consumption and reduce depressive behaviour. Altogether, we identified a single gene source for multiple pathways originating in the brain and bone, which interlink disorders of a mental-physical co-morbidity trias of alcohol abuse-depression/anxiety-bone disorder. Targeting NSM and osteocalcin signalling may, thus, provide a new systems approach in the treatment of a mental-physical co-morbidity trias.


Asunto(s)
Alcoholismo , Enfermedades Óseas , Trastorno Depresivo Mayor , Esfingomielina Fosfodiesterasa , Alcoholismo/genética , Animales , Enfermedades Óseas/genética , Comorbilidad , Trastorno Depresivo Mayor/genética , Humanos , Ratones , Morbilidad , Esfingomielina Fosfodiesterasa/genética
6.
Cereb Cortex ; 31(2): 1316-1333, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33043975

RESUMEN

Sphingolipids and enzymes of the sphingolipid rheostat determine synaptic appearance and signaling in the brain, but sphingolipid contribution to normal behavioral plasticity is little understood. Here we asked how the sphingolipid rheostat contributes to learning and memory of various dimensions. We investigated the role of these lipids in the mechanisms of two different types of memory, such as appetitively and aversively motivated memory, which are considered to be mediated by different neural mechanisms. We found an association between superior performance in short- and long-term appetitively motivated learning and regionally enhanced neutral sphingomyelinase (NSM) activity. An opposite interaction was observed in an aversively motivated task. A valence-dissociating role of NSM in learning was confirmed in mice with genetically reduced NSM activity. This role may be mediated by the NSM control of N-methyl-d-aspartate receptor subunit expression. In a translational approach, we confirmed a positive association of serum NSM activity with long-term appetitively motivated memory in nonhuman primates and in healthy humans. Altogether, these data suggest a new sphingolipid mechanism of de-novo learning and memory, which is based on NSM activity.


Asunto(s)
Encéfalo/enzimología , Péptidos y Proteínas de Señalización Intracelular/sangre , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Animales , Biomarcadores/sangre , Callithrix , Estudios de Cohortes , Femenino , Humanos , Aprendizaje/fisiología , Masculino , Ratones , Ratones Transgénicos , Ratas , Ratas Wistar , Adulto Joven
7.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628160

RESUMEN

Adverse early life experiences are associated with an enhanced risk for mental and physical health problems, including substance abuse. Despite clinical evidence, the mechanisms underlying these relationships are not fully understood. Maternal separation (MS) is a commonly used animal model of early neglect. The aim of the current study is to determine whether the N-methyl-D-aspartate receptor (NMDAR)/glycine sites are involved in vulnerability to alcohol consumption (two-bottle choice paradigm) and reversal learning deficits (Barnes maze task) in adolescent rats subjected to the MS procedure and whether these effects are sex dependent. By using ELISA, we evaluated MS-induced changes in the NMDAR subunits (GluN1, GluN2A, GluN2B) expression, especially in the glycine-binding subunit, GluN1, in the prefrontal cortex (PFC) and ventral striatum (vSTR) of male/female rats. Next, we investigated whether Org 24598, a glycine transporter 1 (GlyT1) inhibitor, was able to modify ethanol drinking in adolescent and adult male/female rats with prior MS experience and reversal learning in the Barnes maze task. Our findings revealed that adolescent MS female rats consumed more alcohol which may be associated with a substantial increase in GluN1 subunit of NMDAR in the PFC and vSTR. Org 24598 decreased ethanol intake in both sexes with a more pronounced decrease in ethanol consumption in adolescent female rats. Furthermore, MS showed deficits in reversal learning in both sexes. Org 24598 ameliorated reversal learning deficits, and this effect was reversed by the NMDAR/glycine site inhibitor, L-701,324. Collectively, our results suggest that NMDAR/glycine sites might be targeted in the treatment of alcohol abuse in adolescents with early MS, especially females.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática , Aprendizaje Inverso , Consumo de Bebidas Alcohólicas , Animales , Etanol/farmacología , Femenino , Glicina/farmacología , Masculino , Privación Materna , Ratas
8.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142621

RESUMEN

Maternal separation (MS) is a key contributor to neurodevelopmental disorders, including learning disabilities. To test the hypothesis that dopamine signaling is a major factor in this, an atypical new dopamine transporter (DAT) inhibitor, CE-123, was assessed for its potential to counteract the MS-induced spatial learning and memory deficit in male and female rats. Hence, neonatal rats (postnatal day (PND)1 to 21) were exposed to MS (180 min/day). Next, the acquisition of spatial learning and memory (Barnes maze task) and the expression of dopamine D1 receptor, dopamine transporter (DAT), and the neuronal GTPase, RIT2, which binds DAT in the vehicle-treated rats were evaluated in the prefrontal cortex and hippocampus in the adolescent animals. The results show that MS impairs the acquisition of spatial learning and memory in rats, with a more severe effect in females. Moreover, the MS induced upregulation of DAT and dopamine D1 receptors expression in the prefrontal cortex and hippocampus in adolescent rats. Regarding RIT2, the expression was decreased in the hippocampus for both the males and females, however, in the prefrontal cortex, reduction was found only in the females, suggesting that there are region-specific differences in DAT endocytic trafficking. CE-123 ameliorated the behavioral deficits associated with MS. Furthermore, it decreased the MS-induced upregulation of D1 receptor expression level in the hippocampus. These effects were more noted in females. Overall, CE-123, an atypical DAT inhibitor, is able to restore cognitive impairment and dopamine signaling in adolescent rats exposed to MS-with more evident effect in females than males.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Animales , Compuestos de Bencidrilo , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , GTP Fosfohidrolasas/metabolismo , Masculino , Privación Materna , Aprendizaje por Laberinto , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Memoria Espacial
9.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216236

RESUMEN

Mephedrone, a synthetic cathinone, is widely abused by adolescents and young adults. The aim of this study was to determine: (i) whether prior mephedrone exposure would alter ethanol reward and (ii) whether age and matrix metalloproteinase-9 (MMP-9) are important in this regard. In our research, male Wistar rats at postnatal day 30 (PND30) received mephedrone at the dose of 10 mg/kg, i.p., 3 times a day for 7 days. To clarify the role of MMP-9 in the mephedrone effects, one mephedrone-treated group received minocycline, as an MMP-9 antagonist. Animals were then assigned to conditioned place preference (CPP) procedure at PND38 (adolescent) or at PND69 (adult). After the CPP test (PND48/79), expression of dopamine D1 receptors (D1R), Cav1.2 (a subtype of L-type calcium channels), and MMP-9 was quantified in the rat ventral striatum (vSTR). The influence of mephedrone administration on the N-methyl-D-aspartate glutamate receptors (NMDAR) subunits (GluN1, GluN2A, and GluN2B) was then assessed in the vSTR of adult rats (only). These results indicate that, in contrast with adolescent rats, adult rats with prior mephedrone administration appear to be more sensitive to the ethanol effect in the CPP test under the drug-free state. The mephedrone effect in adult rats was associated with upregulation of D1R, NMDAR/GluN2B, MMP-9, and Cav1.2 signaling. MMP-9 appears to contribute to these changes in proteins expression because minocycline pretreatment blocked mephedrone-evoked sensitivity to ethanol reward. Thus, our results suggest that prior mephedrone exposure differentially alters ethanol reward in adolescent and adult rats.


Asunto(s)
Etanol/efectos adversos , Metaloproteinasa 9 de la Matriz/metabolismo , Metanfetamina/análogos & derivados , Factores de Edad , Animales , Masculino , Metanfetamina/efectos adversos , Ratas , Ratas Wistar , Recompensa , Transducción de Señal/efectos de los fármacos , Estriado Ventral/efectos de los fármacos , Estriado Ventral/metabolismo
10.
Addict Biol ; 26(3): e12955, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32761719

RESUMEN

Cocaine addiction is a severe psychiatric condition for which currently no effective pharmacotherapy is available. Brain mechanisms for the establishment of addiction-related behaviors are still not fully understood, and specific biomarkers for cocaine use are not available. Sphingolipids are major membrane lipids, which shape neuronal membrane composition and dynamics in the brain. Here, we investigated how chronic cocaine exposure during establishment of addiction-related behaviors affects the activity of the sphingolipid rheostat controlling enzymes in the brain of rats. As we detected specific effects on several enzymes in the brain, we tested whether the activity of selected enzymes in the blood may serve as potential biomarker for cocaine exposure in non-human primates (Callithrix penicillata). We found that intravenous cocaine self-administration led to a reduced mRNA expression of Cers1, Degs1 and Degs2, and Smpd1 in the prefrontal cortex of rats, as well as a reduction of Cers4 expression in the striatum. These effects reversed after 10 days of abstinence. Monkeys showed a robust cocaine-induced place preference (CPP). This coincided with a reduction in blood acid sphingomyelinase (ASM) activity after CPP establishment. This effect normalized after 15 days of abstinence. Altogether, these findings suggest that the establishment of cocaine addiction-related behaviors coincides with changes in the activity of sphingolipid controlling enzymes. In particular, blood ASM levels may serve as a translational biomarker for recent cocaine exposure.


Asunto(s)
Encéfalo/metabolismo , Cocaína/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Biomarcadores Farmacológicos/metabolismo , Encéfalo/enzimología , Cocaína/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/genética , Haplorrinos , Masculino , Ratas , Ratas Wistar , Autoadministración
11.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34360704

RESUMEN

The activation of the endocannabinoid system controls the release of many neurotransmitters involved in the brain reward pathways, including glutamate. Both endocannabinoid and glutamate systems are crucial for alcohol relapse. In the present study, we hypothesize that N-methyl-D-aspartate (NMDA) glutamate receptors regulate the ability of a priming dose of WIN 55,212-2 to cross-reinstate ethanol-induced conditioned place preference (CPP). To test this hypothesis, ethanol-induced (1.0 g/kg, 10% w/v, i.p.) CPP (unbiased method) was established using male adult Wistar rats. After CPP extinction, one group of animals received WIN 55,212-2 (1.0 and 2.0 mg/kg, i.p.), the cannabinoid receptor 1 (CB1) agonist, or ethanol, and the other group received memantine (3.0 or 10 mg/kg, i.p.), the NMDA antagonist and WIN 55,212-2 on the reinstatement day. Our results showed that a priming injection of WIN 55,212-2 (2.0 mg/kg, i.p.) reinstated (cross-reinstated) ethanol-induced CPP with similar efficacy to ethanol. Memantine (3.0 or 10 mg/kg, i.p.) pretreatment blocked this WIN 55,212-2 effect. Furthermore, our experiments indicated that ethanol withdrawal (7 days withdrawal after 10 days ethanol administration) down-regulated the CNR1 (encoding CB1), GRIN1/2A (encoding GluN1 and GluN2A subunit of the NMDA receptor) genes expression in the prefrontal cortex and dorsal striatum, but up-regulated these in the hippocampus, confirming the involvement of these receptors in ethanol rewarding effects. Thus, our results show that the endocannabinoid system is involved in the motivational properties of ethanol, and glutamate may control cannabinoid induced relapse into ethanol seeking behavior.


Asunto(s)
Benzoxazinas/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Etanol/farmacología , Memantina/farmacología , Morfolinas/farmacología , Motivación/efectos de los fármacos , Naftalenos/farmacología , Animales , Masculino , Ratas , Ratas Wistar
12.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33435576

RESUMEN

A synthetic cathinone, mephedrone is widely abused by adolescents and young adults. Despite its widespread use, little is known regarding its long-term effects on cognitive function. Therefore, we assessed, for the first time, whether (A) repeated mephedrone (30 mg/kg, i.p., 10 days, once a day) exposure during adolescence (PND 40) induces deleterious effects on spatial memory and reversal learning (Barnes maze task) in adult (PND 71-84) rats and whether (B) these effects were comparable to amphetamine (2.5 mg/kg, i.p.). Furthermore, the influence of these drugs on MMP-9, NMDA receptor subunits (GluN1, GluN2A/2B) and PSD-95 protein expression were assessed in adult rats. The drug effects were evaluated at doses that per se induce rewarding/reinforcing effects in rats. Our results showed deficits in spatial memory (delayed effect of amphetamine) and reversal learning in adult rats that received mephedrone/amphetamine in adolescence. However, the reversal learning impairment may actually have been due to spatial learning rather than cognitive flexibility impairments. Furthermore, mephedrone, but not amphetamine, enhanced with delayed onset, MMP-9 levels in the prefrontal cortex and the hippocampus. Mephedrone given during adolescence induced changes in MMP-9 level and up-regulation of the GluN2B-containing NMDA receptor (prefrontal cortex and hippocampus) in young adult (PND 63) and adult (PND 87) rats. Finally, in adult rats, PSD-95 expression was increased in the prefrontal cortex and decreased in the hippocampus. In contrast, in adult rats exposed to amphetamine in adolescence, GluN2A subunit and PSD-95 expression were decreased (down-regulated) in the hippocampus. Thus, in mephedrone-but not amphetamine-treated rats, the deleterious effects on spatial memory were associated with changes in MMP-9 level. Because the GluN2B-containing NMDA receptor dominates in adolescence, mephedrone seems to induce more harmful effects on cognition than amphetamine does during this period of life.


Asunto(s)
Anfetamina/farmacología , Hipocampo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Metanfetamina/análogos & derivados , Corteza Prefrontal/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Factores de Edad , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Cognición/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Metanfetamina/farmacología , Actividad Motora/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Molecules ; 25(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751823

RESUMEN

Cocaine-induced plasticity in the glutamatergic transmission and its N-methyl-d-aspartate (NMDA) receptors are critically involved in the development of substance use disorder. The presynaptic active zone proteins control structural synaptic plasticity; however, we are still far from understanding the molecular determinants important for cocaine seeking behavior. The aim of this study was to investigate the effect of cocaine self-administration and different conditions of cocaine forced abstinence on the composition of the NMDA receptor subunits and on the levels of active zone proteins, i.e., Ras-related protein 3A (Rab3A), Rab3 interacting molecules 1 (RIM1) and mammalian uncoordinated protein 13 (Munc13) in the rat nucleus accumbens. We found an up-regulation of the accumbal levels of GluN1 and GluN2A following cocaine self-administration that was paralleled by an increase of Munc13 and RIM1 levels. At the same time, we also demonstrated that different conditions of cocaine abstinence abolished changes in NMDA receptor subunits (except for higher GluN1 levels after cocaine abstinence with extinction training), while an increase in the Munc13 concentration was shown in rats housed in an enriched environment. In conclusion, cocaine self-administration is associated with the specific up-regulation of the NMDA receptor subunit composition and is related with new presynaptic targets controlling neurotransmitter release. Moreover, changes observed in cocaine abstinence with extinction training and in an enriched environment in the levels of NMDA receptor subunit and in the active zone protein, respectively, may represent a potential regulatory step in cocaine-seeking behavior.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Cocaína/administración & dosificación , Proteínas de Unión al GTP/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Núcleo Accumbens/metabolismo , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Proteína de Unión al GTP rab3A/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Comportamiento de Búsqueda de Drogas , Masculino , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Wistar , Autoadministración , Transmisión Sináptica/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
14.
Molecules ; 24(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901889

RESUMEN

There is strong support for the role of the endocannabinoid system and the noncannabinoid lipid signaling molecules, N-acylethanolamines (NAEs), in cocaine reward and withdrawal. In the latest study, we investigated the changes in the levels of the above molecules and expression of cannabinoid receptors (CB1 and CB2) in several brain regions during cocaine-induced reinstatement in rats. By using intravenous cocaine self-administration and extinction procedures linked with yoked triad controls, we found that a priming dose of cocaine (10 mg/kg, i.p.) evoked an increase of the anadamide (AEA) level in the hippocampus and prefrontal cortex only in animals that had previously self-administered cocaine. In the same animals, the level of 2-arachidonoylglycerol (2-AG) increased in the hippocampus and nucleus accumbens. Moreover, the drug-induced relapse resulted in a potent increase in NAEs levels in the cortical areas and striatum and, at the same time, a decrease in the tissue levels of oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) was noted in the nucleus accumbens, cerebellum, and/or hippocampus. At the level of cannabinoid receptors, a priming dose of cocaine evoked either upregulation of the CB1 and CB2 receptors in the prefrontal cortex and lateral septal nuclei or downregulation of the CB1 receptors in the ventral tegmental area. In the medial globus pallidus we observed the upregulation of the CB2 receptor only after yoked chronic cocaine treatment. Our findings support that in the rat brain, the endocannabinoid system and NAEs are involved in cocaine induced-reinstatement where these molecules changed in a region-specific manner and may represent brain molecular signatures for the development of new treatments for cocaine addiction.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Trastornos Relacionados con Cocaína/metabolismo , Cocaína/farmacología , Endocannabinoides/metabolismo , Etanolaminas/metabolismo , Animales , Biomarcadores , Cromatografía Liquida , Trastornos Relacionados con Cocaína/etiología , Trastornos Relacionados con Cocaína/fisiopatología , Expresión Génica , Inmunohistoquímica , Masculino , Ratas , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Receptores de Cannabinoides , Espectrometría de Masas en Tándem
15.
Acta Neuropathol ; 133(3): 463-483, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28000031

RESUMEN

Alcohol is a widely consumed drug that can lead to addiction and severe brain damage. However, alcohol is also used as self-medication for psychiatric problems, such as depression, frequently resulting in depression-alcoholism comorbidity. Here, we identify the first molecular mechanism for alcohol use with the goal to self-medicate and ameliorate the behavioral symptoms of a genetically induced innate depression. An induced over-expression of acid sphingomyelinase (ASM), as was observed in depressed patients, enhanced the consumption of alcohol in a mouse model of depression. ASM hyperactivity facilitates the establishment of the conditioned behavioral effects of alcohol, and thus drug memories. Opposite effects on drinking and alcohol reward learning were observed in animals with reduced ASM function. Importantly, free-choice alcohol drinking-but not forced alcohol exposure-reduces depression-like behavior selectively in depressed animals through the normalization of brain ASM activity. No such effects were observed in normal mice. ASM hyperactivity caused sphingolipid and subsequent monoamine transmitter hypo-activity in the brain. Free-choice alcohol drinking restores nucleus accumbens sphingolipid- and monoamine homeostasis selectively in depressed mice. A gene expression analysis suggested strong control of ASM on the expression of genes related to the regulation of pH, ion transmembrane transport, behavioral fear response, neuroprotection and neuropeptide signaling pathways. These findings suggest that the paradoxical antidepressant effects of alcohol in depressed organisms are mediated by ASM and its control of sphingolipid homeostasis. Both emerge as a new treatment target specifically for depression-induced alcoholism.


Asunto(s)
Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Etanol/uso terapéutico , Homeostasis/genética , Esfingolípidos/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Conducta de Elección/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Depresión/genética , Etanol/sangre , Preferencias Alimentarias/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reflejo de Enderezamiento/efectos de los fármacos , Reflejo de Enderezamiento/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Esfingomielina Fosfodiesterasa/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
16.
Curr Neuropharmacol ; 12(5): 462-74, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25426013

RESUMEN

Depression is one of the most frequent causes of disability in the 21st century. Despite the many preclinical and clinical studies that have addressed this brain disorder, the pathophysiology of depression is not well understood and the available antidepressant drugs are therapeutically inadequate in many patients. In recent years, the potential role of lipid-derived molecules, particularly endocannabinoids (eCBs) and endovanilloids, has been highlighted in the pathogenesis of depression and in the action of antidepressants. There are many indications that the eCB/endovanilloid system is involved in the pathogenesis of depression, including the localization of receptors, modulation of monoaminergic transmission, inhibition of the stress axis and promotion of neuroplasticity in the brain. Preclinical pharmacological and genetic studies of eCBs in depression also suggest that facilitating the eCB system exerts antidepressant-like behavioral responses in rodents. In this article, we review the current knowledge of the role of the eCB/endovanilloid system in depression, as well as the effects of its ligands, models of depression and antidepressant drugs in preclinical and clinical settings.

17.
Toxicol Mech Methods ; 24(4): 315-22, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24576199

RESUMEN

INTRODUCTION: In recent years, a potential participation of endocannabinoids (eCBs) and related endocannabinoid-like molecules, including N-acylethanolamines (NAEs), in the physiological and pathophysiological processes has been highlighted, whereas measurement of their levels still remains difficult. The aim of this study was to develop a bioanalytical method that would enable researchers to simultaneously determine quantitatively eCBs (anandamide - AEA and 2-arachidonoylglycerol - 2-AG) and NAEs (oleoylethanolamide or oleoylethanolamine - OEA, palmitoylethanolamide or palmitoylethanolamine - PEA and linoleoylethanolamide or linoleoylethanolamine - LEA) in the rat brain. The analytical problems with analysis and possible solutions have been also shown. METHODS: The methodology for quantifying eCBs/NAEs by means of a sensitive and selective liquid chromatography tandem mass spectrometry (LC-MS/MS) with electrospray positive ionization and multiple reaction monitoring (MRM) mode was developed and validated. Analytical problems with analyzed compounds were estimated. RESULTS: Reasonably high precision and accuracy of the method were demonstrated in the validation process. The method is linear up to 200 ng/g for AEA, OEA, PEA and LEA and up to 100 µg/g for 2-AG, while the quantification limit reaches 0.2 ng/g and 0.8 µg/g, respectively. DISCUSSION: Simplicity and rapidity of the assay allows analyzing many samples on a routine basis. This article presents the new procedure applied to the analysis of brain tissues.


Asunto(s)
Encéfalo/metabolismo , Cromatografía Liquida/métodos , Endocannabinoides/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Calibración , Masculino , Ratas , Ratas Wistar , Espectrometría de Masa por Ionización de Electrospray/métodos
18.
Pharmacol Rep ; 76(2): 338-347, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480667

RESUMEN

BACKGROUND: Cocaine use disorder (CUD) remains a severe health problem with no effective pharmacological therapy. One of the potential pharmacological strategies for CUD pharmacotherapy includes manipulations of the brain glutamatergic (Glu) system which is particularly involved in drug withdrawal and relapse. Previous research indicated a pivotal role of ionotropic N-methyl-D-aspartate (NMDA) receptors or metabotropic receptors' type 5 (mGlu5) receptors in controlling the reinstatement of cocaine. Stimulation of the above molecules results in the activation of the downstream signaling targets such as neuronal nitric oxide synthase (nNOS) and the release of nitric oxide. METHODS: In this paper, we investigated the molecular changes in nNOS in the prefrontal cortex and nucleus accumbens following 3 and 10 days of cocaine abstinence as well as the effectiveness of nNOS blockade with the selective enzyme inhibitor N-ω-propyl-L-arginine hydrochloride (L-NPA) on cocaine seeking in male rats. The effect of L-NPA on locomotor activity in drug-naïve animals was investigated. RESULTS: Ten-day (but not 3-day) cocaine abstinence from cocaine self-administration increased nNOS gene and protein expression in the nucleus accumbens, but not in the prefrontal cortex. L-NPA (0.5-5 mg/kg) administered peripherally did not change locomotor activity but attenuated the reinstatement induced with cocaine priming or the drug-associated conditioned cue. CONCLUSIONS: Our findings support accumbal nNOS as an important molecular player for cocaine seeking while its inhibitors could be considered as anti-cocaine pharmacological tools in male rats.


Asunto(s)
Cocaína , Comportamiento de Búsqueda de Drogas , Animales , Masculino , Ratas , Encéfalo/metabolismo , Cocaína/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Núcleo Accumbens/metabolismo , Autoadministración
19.
Front Mol Neurosci ; 16: 1092864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846570

RESUMEN

One of the most important yet still underappreciated mechanisms of depression is distorted cognition, with aberrant sensitivity to negative feedback being one of the best-described examples. As serotonin has been identified as an important modulator of sensitivity to feedback and because the hippocampus has been implicated in the mediation of learning from positive and negative outcomes, the present study aimed to identify differences in the expression of various genes encoding 5-HT receptors in this brain region between the rats displaying trait sensitivity and insensitivity to negative feedback. The results demonstrated that trait sensitivity to negative feedback is associated with increased mRNA expression of the 5-HT2A receptors in the rat ventral hippocampus (vHipp). Further analysis revealed that this increased expression might be modulated epigenetically by miRNAs with a high target score for the Htr2a gene (miR-16-5p and miR-15b-5p). Additionally, although not confirmed at the protein level, trait sensitivity to negative feedback was associated with decreased expression of mRNA encoding the 5-HT7 receptor in the dorsal hippocampus (dHipp). We observed no statistically significant intertrait differences in the expression of the Htr1a, Htr2c, and Htr7 genes in the vHipp and no statistically significant intertrait differences in the expression of the Htr1a, Htr2a, and Htr2c genes in the dHipp of the tested animals. These results suggest that resilience to depression manifested by reduced sensitivity to negative feedback may be mediated via these receptors.

20.
Behav Brain Res ; 445: 114396, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36934986

RESUMEN

A maternal high-fat diet (HFD) provokes changes in the offspring's brain's structure, function, and development. These changes may cause neuropsychiatric disorders in the early life of offspring the basis of which may be memory impairment. In this study, the effects of maternal HFD during pregnancy and lactation on the short-term memory in adolescent and young adult offspring were evaluated. We analyzed the expression of genes encoding the glutamatergic transporters in the hippocampus to verify the association between changes in glutamatergic transporters and behavioral changes in offspring. Next, we examined whether maternal diet-induced changes in the mRNA levels of genes encoding the NMDA receptor subunits and the AMPA receptor subunits, as well as BDNF in this structure in offspring. All significant changes were validated at the protein level. We found that a maternal HFD during pregnancy and lactation disrupts short-term memory in adolescent and young adult females. The latter change is likely related to the dysregulation of hippocampal levels of GluN2B subunit of NMDA receptors and of reduced levels of BDNF. In summary, we showed that a maternal HFD during pregnancy and lactation triggered several changes within the glutamatergic system in the hippocampus of rat offspring, which may be related to producing behavioral changes in offspring.


Asunto(s)
Dieta Alta en Grasa , Efectos Tardíos de la Exposición Prenatal , Embarazo , Ratas , Animales , Femenino , Humanos , Dieta Alta en Grasa/efectos adversos , Memoria a Corto Plazo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Lactancia , Hipocampo/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA