RESUMEN
BACKGROUND: Self-renewing, chemoresistant breast cancer stem cells are believed to contribute significantly to cancer invasion, migration and patient relapse. Therefore, the identification of signaling pathways that regulate the acquisition of stem-like qualities is an important step towards understanding why patients relapse and towards development of novel therapeutics that specifically target cancer stem cell vulnerabilities. Recent studies identified a role for the aryl hydrocarbon receptor (AHR), an environmental carcinogen receptor implicated in cancer initiation, in normal tissue-specific stem cell self-renewal. These studies inspired the hypothesis that the AHR plays a role in the acquisition of cancer stem cell-like qualities. RESULTS: To test this hypothesis, AHR activity in Hs578T triple negative and SUM149 inflammatory breast cancer cells were modulated with AHR ligands, shRNA or AHR-specific inhibitors, and phenotypic, genomic and functional stem cell-associated characteristics were evaluated. The data demonstrate that (1) ALDH(high) cells express elevated levels of Ahr and Cyp1b1 and Cyp1a1, AHR-driven genes, (2) AHR knockdown reduces ALDH activity by 80%, (3) AHR hyper-activation with several ligands, including environmental ligands, significantly increases ALDH1 activity, expression of stem cell- and invasion/migration-associated genes, and accelerates cell migration, (4) a significant correlation between Ahr or Cyp1b1 expression (as a surrogate marker for AHR activity) and expression of stem cell- and invasion/migration-associated gene sets is seen with genomic data obtained from 79 human breast cancer cell lines and over 1,850 primary human breast cancers, (5) the AHR interacts directly with Sox2, a master regulator of self-renewal; AHR ligands increase this interaction and nuclear SOX2 translocation, (6) AHR knockdown inhibits tumorsphere formation in low adherence conditions, (7) AHR inhibition blocks the rapid migration of ALDH(high) cells and reduces ALDH(high) cell chemoresistance, (8) ALDH(high) cells are highly efficient at initiating tumors in orthotopic xenografts, and (9) AHR knockdown inhibits tumor initiation and reduces tumor Aldh1a1, Sox2, and Cyp1b1 expression in vivo. CONCLUSIONS: These data suggest that the AHR plays an important role in development of cells with cancer stem cell-like qualities and that environmental AHR ligands may exacerbate breast cancer by enhancing expression of these properties.
Asunto(s)
Neoplasias de la Mama/patología , Mama/patología , Células Madre Neoplásicas/patología , Receptores de Hidrocarburo de Aril/genética , Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células Madre Neoplásicas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismoRESUMEN
The evolutionarily conserved aryl hydrocarbon receptor (AhR) has been studied for its role in environmental chemical-induced toxicity. However, recent studies have demonstrated that the AhR may regulate the hematopoietic and immune systems during development in a cell-specific manner. These results, together with the absence of an in vitro model system enabling production of large numbers of primary human hematopoietic progenitor cells (HPs) capable of differentiating into megakaryocyte- and erythroid-lineage cells, motivated us to determine if AhR modulation could facilitate both progenitor cell expansion and megakaryocyte and erythroid cell differentiation. Using a novel, pluripotent stem cell-based, chemically-defined, serum and feeder cell-free culture system, we show that the AhR is expressed in HPs and that, remarkably, AhR activation drives an unprecedented expansion of HPs, megakaryocyte-lineage cells, and erythroid-lineage cells. Further AhR modulation within rapidly expanding progenitor cell populations directs cell fate, with chronic AhR agonism permissive to erythroid differentiation and acute antagonism favoring megakaryocyte specification. These results highlight the development of a new Good Manufacturing Practice-compliant platform for generating virtually unlimited numbers of human HPs with which to scrutinize red blood cell and platelet development, including the assessment of the role of the AhR critical cell fate decisions during hematopoiesis.
Asunto(s)
Diferenciación Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Apoptosis/efectos de los fármacos , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Carbazoles/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Proliferación Celular/efectos de los fármacos , Citocromo P-450 CYP1B1 , Células Eritroides/citología , Células Eritroides/efectos de los fármacos , Células Eritroides/metabolismo , Células Nutrientes/citología , Células Nutrientes/efectos de los fármacos , Células Nutrientes/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genoma Humano/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/enzimología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Megacariocitos/citología , Megacariocitos/efectos de los fármacos , Megacariocitos/metabolismo , Ratones , Receptores de Hidrocarburo de Aril/agonistasRESUMEN
PURPOSE OF REVIEW: Stem cells are an important tool for the study of ex-vivo models of megakaryopoiesis and the production of functional platelets. In this manuscript, we review the optimization of megakaryocyte and platelet differentiation and discuss the mechanistic studies and disease models that have incorporated stem cell technologies. RECENT FINDINGS: Mechanisms of cytoskeletal regulation and signal transduction have revealed insights into hierarchical dynamics of hematopoiesis, highlighting the close relationship between hematopoietic stem cells and cells of the megakaryocyte lineage. Platelet disorders have been successfully modeled and genetically corrected, and differentiation strategies have been optimized to the extent that utilizing stem cell-derived platelets for cellular therapy is feasible. SUMMARY: Studies that utilize stem cells for the efficient derivation of megakaryocytes and platelets have played a role in uncovering novel molecular mechanisms of megakaryopoiesis, modeling and correcting relevant diseases, and differentiating platelets that are functional and scalable for translation into the clinic. Efforts to derive megakaryocytes and platelets from pluripotent stem cells foster the opportunity of a revolutionary cellular therapy for the treatment of multiple platelet-associated diseases.
Asunto(s)
Plaquetas/fisiología , Megacariocitos/fisiología , Células Madre/fisiología , Animales , Plaquetas/citología , Diferenciación Celular , Linaje de la Célula , Humanos , Megacariocitos/citología , Modelos Biológicos , Células Madre/citologíaRESUMEN
The development of methods to achieve efficient reprogramming of human cells while avoiding the permanent presence of reprogramming transgenes represents a critical step toward the use of induced pluripotent stem cells (iPSC) for clinical purposes, such as disease modeling or reconstituting therapies. Although several methods exist for generating iPSC free of reprogramming transgenes from mouse cells or neonatal normal human tissues, a sufficiently efficient reprogramming system is still needed to achieve the widespread derivation of disease-specific iPSC from humans with inherited or degenerative diseases. Here, we report the use of a humanized version of a single lentiviral "stem cell cassette" vector to accomplish efficient reprogramming of normal or diseased skin fibroblasts obtained from humans of virtually any age. Simultaneous transfer of either three or four reprogramming factors into human target cells using this single vector allows derivation of human iPSC containing a single excisable viral integration that on removal generates human iPSC free of integrated transgenes. As a proof of principle, here we apply this strategy to generate >100 lung disease-specific iPSC lines from individuals with a variety of diseases affecting the epithelial, endothelial, or interstitial compartments of the lung, including cystic fibrosis, α-1 antitrypsin deficiency-related emphysema, scleroderma, and sickle-cell disease. Moreover, we demonstrate that human iPSC generated with this approach have the ability to robustly differentiate into definitive endoderm in vitro, the developmental precursor tissue of lung epithelia.
Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Endodermo/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Citometría de Flujo , Vectores Genéticos/genética , Humanos , Lentivirus/genética , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that increases the expression of detoxifying enzymes upon ligand stimulation. Recent studies now suggest that novel endogenous roles of the AHR exist throughout development. In an effort to create an optimized model system for the study of AHR signaling in several cellular lineages, we have employed a CRISPR/CAS9 genome editing strategy in induced pluripotent stem cells (iPSCs) to incorporate a reporter cassette at the transcription start site of one of its canonical targets, cytochrome P450 1A1 (CYP1A1). This cell line faithfully reports on CYP1A1 expression, with luciferase levels as its functional readout, when treated with an endogenous AHR ligand (FICZ) at escalating doses. iPSC-derived fibroblast-like cells respond to acute exposure to environmental and endogenous AHR ligands, and iPSC-derived hepatocytes increase CYP1A1 in a similar manner to primary hepatocytes. This cell line is an important innovation that can be used to map AHR activity in discrete cellular subsets throughout developmental ontogeny. As further endogenous ligands are proposed, this line can be used to screen for safety and efficacy and can report on the ability of small molecules to regulate critical cellular processes by modulating the activity of the AHR.
RESUMEN
Through the ectopic expression of four transcription factors, Oct4, Klf4, Sox2 and cMyc, human somatic cells can be converted to a pluripotent state, generating so-called induced pluripotent stem cells (iPSCs)(1-4). Patient-specific iPSCs lack the ethical concerns that surround embryonic stem cells (ESCs) and would bypass possible immune rejection. Thus, iPSCs have attracted considerable attention for disease modeling studies, the screening of pharmacological compounds, and regenerative therapies(5). We have shown the generation of transgene-free human iPSCs from patients with different lung diseases using a single excisable polycistronic lentiviral Stem Cell Cassette (STEMCCA) encoding the Yamanaka factors(6). These iPSC lines were generated from skin fibroblasts, the most common cell type used for reprogramming. Normally, obtaining fibroblasts requires a skin punch biopsy followed by expansion of the cells in culture for a few passages. Importantly, a number of groups have reported the reprogramming of human peripheral blood cells into iPSCs(7-9). In one study, a Tet inducible version of the STEMCCA vector was employed(9), which required the blood cells to be simultaneously infected with a constitutively active lentivirus encoding the reverse tetracycline transactivator. In contrast to fibroblasts, peripheral blood cells can be collected via minimally invasive procedures, greatly reducing the discomfort and distress of the patient. A simple and effective protocol for reprogramming blood cells using a constitutive single excisable vector may accelerate the application of iPSC technology by making it accessible to a broader research community. Furthermore, reprogramming of peripheral blood cells allows for the generation of iPSCs from individuals in which skin biopsies should be avoided (i.e. aberrant scarring) or due to pre-existing disease conditions preventing access to punch biopsies. Here we demonstrate a protocol for the generation of human iPSCs from peripheral blood mononuclear cells (PBMCs) using a single floxed-excisable lentiviral vector constitutively expressing the 4 factors. Freshly collected or thawed PBMCs are expanded for 9 days as described(10,11) in medium containing ascorbic acid, SCF, IGF-1, IL-3 and EPO before being transduced with the STEMCCA lentivirus. Cells are then plated onto MEFs and ESC-like colonies can be visualized two weeks after infection. Finally, selected clones are expanded and tested for the expression of the pluripotency markers SSEA-4, Tra-1-60 and Tra-1-81. This protocol is simple, robust and highly consistent, providing a reliable methodology for the generation of human iPSCs from readily accessible 4 ml of blood.