Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(5): 809-834, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38353596

RESUMEN

Breathing behaviour involves the generation of normal breaths (eupnoea) on a timescale of seconds and sigh breaths on the order of minutes. Both rhythms emerge in tandem from a single brainstem site, but whether and how a single cell population can generate two disparate rhythms remains unclear. We posit that recurrent synaptic excitation in concert with synaptic depression and cellular refractoriness gives rise to the eupnoea rhythm, whereas an intracellular calcium oscillation that is slower by orders of magnitude gives rise to the sigh rhythm. A mathematical model capturing these dynamics simultaneously generates eupnoea and sigh rhythms with disparate frequencies, which can be separately regulated by physiological parameters. We experimentally validated key model predictions regarding intracellular calcium signalling. All vertebrate brains feature a network oscillator that drives the breathing pump for regular respiration. However, in air-breathing mammals with compliant lungs susceptible to collapse, the breathing rhythmogenic network may have refashioned ubiquitous intracellular signalling systems to produce a second slower rhythm (for sighs) that prevents atelectasis without impeding eupnoea. KEY POINTS: A simplified activity-based model of the preBötC generates inspiratory and sigh rhythms from a single neuron population. Inspiration is attributable to a canonical excitatory network oscillator mechanism. Sigh emerges from intracellular calcium signalling. The model predicts that perturbations of calcium uptake and release across the endoplasmic reticulum counterintuitively accelerate and decelerate sigh rhythmicity, respectively, which was experimentally validated. Vertebrate evolution may have adapted existing intracellular signalling mechanisms to produce slow oscillations needed to optimize pulmonary function in mammals.


Asunto(s)
Calcio , Respiración , Animales , Neuronas/fisiología , Tronco Encefálico/fisiología , Mamíferos , Centro Respiratorio/fisiología
2.
Plant Cell ; 33(7): 2235-2257, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-33895820

RESUMEN

Endosperm is an angiosperm innovation central to their reproduction whose development, and thus seed viability, is controlled by genomic imprinting, where expression from certain genes is parent-specific. Unsuccessful imprinting has been linked to failed inter-specific and inter-ploidy hybridization. Despite their importance in plant speciation, the underlying mechanisms behind these endosperm-based barriers remain poorly understood. Here, we describe one such barrier between diploid Mimulus guttatus and tetraploid Mimulus luteus. The two parents differ in endosperm DNA methylation, expression dynamics, and imprinted genes. Hybrid seeds suffer from underdeveloped endosperm, reducing viability, or arrested endosperm and seed abortion when M. guttatus or M. luteus is seed parent, respectively, and transgressive methylation and expression patterns emerge. The two inherited M. luteus subgenomes, genetically distinct but epigenetically similar, are expressionally dominant over the M. guttatus genome in hybrid embryos and especially their endosperm, where paternal imprints are perturbed. In aborted seeds, de novo methylation is inhibited, potentially owing to incompatible paternal instructions of imbalanced dosage from M. guttatus imprints. We suggest that diverged epigenetic/regulatory landscapes between parental genomes induce epigenetic repatterning and global shifts in expression, which, in endosperm, may uniquely facilitate incompatible interactions between divergent imprinting schemes, potentially driving rapid barriers.


Asunto(s)
Mimulus/metabolismo , Genoma de Planta/genética , Impresión Genómica/genética , Impresión Genómica/fisiología , Hibridación Genética , Mimulus/genética , Semillas/genética , Semillas/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(27): 13210-13214, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31160460

RESUMEN

Art forgeries have existed since antiquity, but with the recent rapidly expanding commercialization of art, the approach to art authentication has demanded increasingly sophisticated detection schemes. So far, the most conclusive criterion in the field of counterfeit detection is the scientific proof of material anachronisms. The establishment of the earliest possible date of realization of a painting, called the terminus post quem, is based on the comparison of materials present in an artwork with information on their earliest date of discovery or production. This approach provides relative age information only and thus may fail in proving a forgery. Radiocarbon (14C) dating is an attractive alternative, as it delivers absolute ages with a definite time frame for the materials used. The method, however, is invasive and in its early days required sampling tens of grams of material. With the advent of accelerator mass spectrometry (AMS) and further development of gas ion sources (GIS), a reduction of sample size down to microgram amounts of carbon became possible, opening the possibility to date individual paint layers in artworks. Here we discuss two microsamples taken from an artwork carrying the date of 1866: a canvas fiber and a paint chip (<200 µg), each delivering a different radiocarbon response. This discrepancy uncovers the specific strategy of the forger: Dating of the organic binder delivers clear evidence of a post-1950 creation on reused canvas. This microscale 14C analysis technique is a powerful method to reveal technically complex forgery cases with hard facts at a minimal sampling impact.

5.
Plant Cell ; 29(9): 2150-2167, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28814644

RESUMEN

Recent studies have shown that one of the parental subgenomes in ancient polyploids is generally more dominant, having retained more genes and being more highly expressed, a phenomenon termed subgenome dominance. The genomic features that determine how quickly and which subgenome dominates within a newly formed polyploid remain poorly understood. To investigate the rate of emergence of subgenome dominance, we examined gene expression, gene methylation, and transposable element (TE) methylation in a natural, <140-year-old allopolyploid (Mimulus peregrinus), a resynthesized interspecies triploid hybrid (M. robertsii), a resynthesized allopolyploid (M. peregrinus), and progenitor species (M. guttatus and M. luteus). We show that subgenome expression dominance occurs instantly following the hybridization of divergent genomes and significantly increases over generations. Additionally, CHH methylation levels are reduced in regions near genes and within TEs in the first-generation hybrid, intermediate in the resynthesized allopolyploid, and are repatterned differently between the dominant and recessive subgenomes in the natural allopolyploid. Subgenome differences in levels of TE methylation mirror the increase in expression bias observed over the generations following hybridization. These findings provide important insights into genomic and epigenomic shock that occurs following hybridization and polyploid events and may also contribute to uncovering the mechanistic basis of heterosis and subgenome dominance.


Asunto(s)
Genoma de Planta , Hibridación Genética , Mimulus/genética , Poliploidía , Metilación de ADN/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Filogenia , Especificidad de la Especie
6.
BMC Bioinformatics ; 20(1): 149, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894122

RESUMEN

BACKGROUND: Gene duplications are a major source of raw material for evolution and a likely contributor to the diversity of life on earth. Duplicate genes (i.e., homeologs, in the case of a whole genome duplication) may retain their ancestral function, sub- or neofunctionalize, or be lost entirely. A primary way that duplicate genes evolve new functions is by altering their expression patterns. Comparing the expression patterns of duplicate genes gives clues as to whether any of these evolutionary processes have occurred. RESULTS: We develop a likelihood ratio test for the analysis of the expression ratios of duplicate genes across two conditions (e.g., tissues). We demonstrate an application of this test by comparing homeolog expression patterns of 1448 homeologous gene pairs using RNA-seq data generated from leaves and petals of an allotetraploid monkeyflower (Mimulus luteus). We assess the sensitivity of this test to different levels of homeolog expression bias and compare the method to several alternatives. CONCLUSIONS: The likelihood ratio test derived here is a direct, transparent, and easily implemented method for detecting changes in homeolog expression bias that outperforms alternative approaches. While our method was derived with homeolog analysis in mind, this method can be used to analyze changes in the ratio of expression levels between any two genes in any two conditions.


Asunto(s)
Duplicación de Gen , Perfilación de la Expresión Génica , Genes de Plantas , Mimulus/genética , Poliploidía , Análisis de Secuencia de ARN/métodos , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta
7.
Acta Biotheor ; 64(1): 11-32, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26424585

RESUMEN

We present a population density and moment-based description of the stochastic dynamics of domain [Formula: see text]-mediated inactivation of L-type [Formula: see text] channels. Our approach accounts for the effect of heterogeneity of local [Formula: see text] signals on whole cell [Formula: see text] currents; however, in contrast with prior work, e.g., Sherman et al. (Biophys J 58(4):985-995, 1990), we do not assume that [Formula: see text] domain formation and collapse are fast compared to channel gating. We demonstrate the population density and moment-based modeling approaches using a 12-state Markov chain model of an L-type [Formula: see text] channel introduced by Greenstein and Winslow (Biophys J 83(6):2918-2945, 2002). Simulated whole cell voltage clamp responses yield an inactivation function for the whole cell [Formula: see text] current that agrees with the traditional approach when domain dynamics are fast. We analyze the voltage-dependence of [Formula: see text] inactivation that may occur via slow heterogeneous domain [[Formula: see text]]. Next, we find that when channel permeability is held constant, [Formula: see text]-mediated inactivation of L-type channels increases as the domain time constant increases, because a slow domain collapse rate leads to increased mean domain [[Formula: see text]] near open channels; conversely, when the maximum domain [[Formula: see text]] is held constant, inactivation decreases as the domain time constant increases. Comparison of simulation results using population densities and moment equations confirms the computational efficiency of the moment-based approach, and enables the validation of two distinct methods of truncating and closing the open system of moment equations. In general, a slow domain time constant requires higher order moment truncation for agreement between moment-based and population density simulations.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Modelos Teóricos , Densidad de Población , Algoritmos , Humanos , Cadenas de Markov
8.
Am J Physiol Heart Circ Physiol ; 308(5): H510-23, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25485896

RESUMEN

Population density approaches to modeling local control of Ca(2+)-induced Ca(2+) release in cardiac myocytes can be used to construct minimal whole cell models that accurately represent heterogeneous local Ca(2+) signals. Unfortunately, the computational complexity of such "local/global" whole cell models scales with the number of Ca(2+) release unit (CaRU) states, which is a rapidly increasing function of the number of ryanodine receptors (RyRs) per CaRU. Here we present an alternative approach based on a Langevin description of the collective gating of RyRs coupled by local Ca(2+) concentration ([Ca(2+)]). The computational efficiency of this approach no longer depends on the number of RyRs per CaRU. When the RyR model is minimal, Langevin equations may be replaced by a single Fokker-Planck equation, yielding an extremely compact and efficient local/global whole cell model that reproduces and helps interpret recent experiments that investigate Ca(2+) homeostasis in permeabilized ventricular myocytes. Our calculations show that elevated myoplasmic [Ca(2+)] promotes elevated network sarcoplasmic reticulum (SR) [Ca(2+)] via SR Ca(2+)-ATPase-mediated Ca(2+) uptake. However, elevated myoplasmic [Ca(2+)] may also activate RyRs and promote stochastic SR Ca(2+) release, which can in turn decrease SR [Ca(2+)]. Increasing myoplasmic [Ca(2+)] results in an exponential increase in spark-mediated release and a linear increase in nonspark-mediated release, consistent with recent experiments. The model exhibits two steady-state release fluxes for the same network SR [Ca(2+)] depending on whether myoplasmic [Ca(2+)] is low or high. In the later case, spontaneous release decreases SR [Ca(2+)] in a manner that maintains robust Ca(2+) sparks.


Asunto(s)
Señalización del Calcio , Ventrículos Cardíacos/metabolismo , Modelos Cardiovasculares , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Ventrículos Cardíacos/citología , Homeostasis , Cadenas de Markov , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
9.
Biophys J ; 106(12): 2693-709, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24940787

RESUMEN

Intracellular calcium (Ca(2+)) plays a significant role in many cell signaling pathways, some of which are localized to spatially restricted microdomains. Ca(2+) binding proteins (Ca(2+) buffers) play an important role in regulating Ca(2+) concentration ([Ca(2+)]). Buffers typically slow [Ca(2+)] temporal dynamics and increase the effective volume of Ca(2+) domains. Because fluctuations in [Ca(2+)] decrease in proportion to the square-root of a domain's physical volume, one might conjecture that buffers decrease [Ca(2+)] fluctuations and, consequently, mitigate the significance of small domain volume concerning Ca(2+) signaling. We test this hypothesis through mathematical and computational analysis of idealized buffer-containing domains and their stochastic dynamics during free Ca(2+) influx with passive exchange of both Ca(2+) and buffer with bulk concentrations. We derive Langevin equations for the fluctuating dynamics of Ca(2+) and buffer and use these stochastic differential equations to determine the magnitude of [Ca(2+)] fluctuations for different buffer parameters (e.g., dissociation constant and concentration). In marked contrast to expectations based on a naive application of the principle of effective volume as employed in deterministic models of Ca(2+) signaling, we find that mobile and rapid buffers typically increase the magnitude of domain [Ca(2+)] fluctuations during periods of Ca(2+) influx, whereas stationary (immobile) Ca(2+) buffers do not. Also contrary to expectations, we find that in the absence of Ca(2+) influx, buffers influence the temporal characteristics, but not the magnitude, of [Ca(2+)] fluctuations. We derive an analytical formula describing the influence of rapid Ca(2+) buffers on [Ca(2+)] fluctuations and, importantly, identify the stochastic analog of (deterministic) effective domain volume. Our results demonstrate that Ca(2+) buffers alter the dynamics of [Ca(2+)] fluctuations in a nonintuitive manner. The finding that Ca(2+) buffers do not suppress intrinsic domain [Ca(2+)] fluctuations raises the intriguing question of whether or not [Ca(2+)] fluctuations are a physiologically significant aspect of local Ca(2+) signaling.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Microdominios de Membrana/metabolismo , Tampones (Química) , Modelos Biológicos , Factores de Tiempo
10.
Learn Mem ; 20(12): 670-3, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24241749

RESUMEN

The phosphatase and tensin homolog detected on chromosome 10 (PTEN) gene product modulates activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. The PI3K pathway has been found to be involved in the regulation of the fragile X mental retardation protein, which is important for long-term depression and in the formation of new memories. We used delayed fear conditioning and trace fear conditioning to determine learning and memory deficits in neuron subset-specific Pten (NS-Pten) conditional knockout (KO) mice. We found that NS-Pten KO mice had deficits in contextual learning and trace conditioning, but did not have deficits in the ability to learn a conditioned stimulus. Furthermore, we found increased levels in the total and phosphorylated forms of the fragile X mental retardation protein (FMRP) in the hippocampus of NS-Pten KO mice.


Asunto(s)
Condicionamiento Clásico/fisiología , Miedo/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Regulación de la Expresión Génica/genética , Trastornos de la Memoria/genética , Fosfohidrolasa PTEN/deficiencia , Animales , Señales (Psicología) , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/metabolismo , Trastornos de la Memoria/patología , Ratones , Ratones Transgénicos , Proteína Oncogénica v-akt/metabolismo , Fosfohidrolasa PTEN/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
11.
Genes Brain Behav ; 22(4): e12854, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37376966

RESUMEN

The mechanistic target of rapamycin (mTOR) pathway is a signaling system integral to neural growth and migration. In both patients and rodent models, mutations to the phosphatase and tensin homolog gene (PTEN) on chromosome 10 results in hyperactivation of the mTOR pathway, as well as seizures, intellectual disabilities and autistic behaviors. Rapamycin, an inhibitor of mTOR, can reverse the epileptic phenotype of neural subset specific Pten knockout (NS-Pten KO) mice, but its impact on behavior is not known. To determine the behavioral effects of rapamycin, male and female NS-Pten KO and wildtype (WT) mice were assigned as controls or administered 10 mg/kg of rapamycin for 2 weeks followed by behavioral testing. Rapamycin improved social behavior in both genotypes and stereotypic behaviors in NS-Pten KO mice. Rapamycin treatment resulted in a reduction of several measures of activity in the open field test in both genotypes. Rapamycin did not reverse the reduced anxiety behavior in KO mice. These data show the potential clinical use of mTOR inhibitors by showing its administration can reduce the production of autistic-like behaviors in NS-Pten KO mice.


Asunto(s)
Epilepsia , Sirolimus , Masculino , Femenino , Animales , Ratones , Sirolimus/farmacología , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Epilepsia/genética , Neuronas/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/farmacología
12.
Epilepsy Res ; 195: 107201, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562146

RESUMEN

Preclinical MRI studies have been utilized for the discovery of biomarkers that predict post-traumatic epilepsy (PTE). However, these single site studies often lack statistical power due to limited and homogeneous datasets. Therefore, multisite studies, such as the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx), are developed to create large, heterogeneous datasets that can lead to more statistically significant results. EpiBioS4Rx collects preclinical data internationally across sites, including the United States, Finland, and Australia. However, in doing so, there are robust normalization and harmonization processes that are required to obtain statistically significant and generalizable results. This work describes the tools and procedures used to harmonize multisite, multimodal preclinical imaging data acquired by EpiBioS4Rx. There were four main harmonization processes that were utilized, including file format harmonization, naming convention harmonization, image coordinate system harmonization, and diffusion tensor imaging (DTI) metrics harmonization. By using Python tools and bash scripts, the file formats, file names, and image coordinate systems are harmonized across all the sites. To harmonize DTI metrics, values are estimated for each voxel in an image to generate a histogram representing the whole image. Then, the Quantitative Imaging Toolkit (QIT) modules are utilized to scale the mode to a value of one and depict the subsequent harmonized histogram. The standardization of file formats, naming conventions, coordinate systems, and DTI metrics are qualitatively assessed. The histograms of the DTI metrics were generated for all the individual rodents per site. For inter-site analysis, an average of the individual scans was calculated to create a histogram that represents each site. In order to ensure the analysis can be run at the level of individual animals, the sham and TBI cohort were analyzed separately, which depicted the same harmonization factor. The results demonstrate that these processes qualitatively standardize the file formats, naming conventions, coordinate systems, and DTI metrics of the data. This assists in the ability to share data across the study, as well as disseminate tools that can help other researchers to strengthen the statistical power of their studies and analyze data more cohesively.


Asunto(s)
Epilepsia Postraumática , Epilepsia , Animales , Epilepsia Postraumática/tratamiento farmacológico , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Biomarcadores , Encéfalo/diagnóstico por imagen
13.
PLoS Comput Biol ; 7(5): e1002039, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21589886

RESUMEN

Bistability plays a central role in the gene regulatory networks (GRNs) controlling many essential biological functions, including cellular differentiation and cell cycle control. However, establishing the network topologies that can exhibit bistability remains a challenge, in part due to the exceedingly large variety of GRNs that exist for even a small number of components. We begin to address this problem by employing chemical reaction network theory in a comprehensive in silico survey to determine the capacity for bistability of more than 40,000 simple networks that can be formed by two transcription factor-coding genes and their associated proteins (assuming only the most elementary biochemical processes). We find that there exist reaction rate constants leading to bistability in ∼90% of these GRN models, including several circuits that do not contain any of the TF cooperativity commonly associated with bistable systems, and the majority of which could only be identified as bistable through an original subnetwork-based analysis. A topological sorting of the two-gene family of networks based on the presence or absence of biochemical reactions reveals eleven minimal bistable networks (i.e., bistable networks that do not contain within them a smaller bistable subnetwork). The large number of previously unknown bistable network topologies suggests that the capacity for switch-like behavior in GRNs arises with relative ease and is not easily lost through network evolution. To highlight the relevance of the systematic application of CRNT to bistable network identification in real biological systems, we integrated publicly available protein-protein interaction, protein-DNA interaction, and gene expression data from Saccharomyces cerevisiae, and identified several GRNs predicted to behave in a bistable fashion.


Asunto(s)
Redes Reguladoras de Genes , Modelos Químicos , Modelos Genéticos , Simulación por Computador , Genes Fúngicos , Genómica , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
PLoS One ; 17(7): e0270839, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35834543

RESUMEN

In an empirical analysis of transposable element (TE) abundance within natural populations of Mimulus guttatus and Drosophila melanogaster, we found a surprisingly high variance of TE count (e.g., variance-to-mean ratio on the order of 10 to 300). To obtain insight regarding the evolutionary genetic mechanisms that underlie the overdispersed population distributions of TE abundance, we developed a mathematical model of TE population genetics that includes the dynamics of element proliferation and purifying selection on TE load. The modeling approach begins with a master equation for a birth-death process and extends the predictions of the classical theory of TE dynamics in several ways. In particular, moment-based analyses of population distributions of TE load reveal that overdispersion is likely to arise via copy-and-paste proliferation dynamics, especially when the elementary processes of proliferation and excision are approximately balanced. Parameter studies and analytic work confirm this result and further suggest that overdispersed population distributions of TE abundance are probably not a consequence of purifying selection on total element load.


Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster , Animales , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Evolución Molecular , Genética de Población , Selección Genética
15.
Sci Justice ; 62(4): 455-460, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35931451

RESUMEN

We have recently demonstrated that coated exfoliated Egyptian blue powder is effective for detecting latent fingermarks on a range of highly-patterned non-porous and semi-porous surfaces. In this extension of that work, we present our studies into an alternative approach to prepare exfoliated Egyptian blue coated with cetrimonium bromide and Tween® 20 using a simpler technique. The quality of the latent fingermarks developed with these exfoliated powders and the commercial powder were compared in acomprehensive study. Depletion series of natural fingermarks from a wide range of donors (12 males and females) deposited on non-porous (glass slides) and semi-porous (Australian banknotes) surfaces were used in this study. Enhancement in the performance of the coated exfoliated particles compared to the commercial powder was observed, particularly in the case of aged fingermarks and polymer banknotes as challenging substrates.


Asunto(s)
Dermatoglifia , Metanol , Anciano , Australia , Cobre , Femenino , Humanos , Masculino , Polvos , Silicatos
16.
Sci Rep ; 12(1): 2923, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35190626

RESUMEN

Breathing depends on interneurons in the preBötzinger complex (preBötC) derived from Dbx1-expressing precursors. Here we investigate whether rhythm- and pattern-generating functions reside in discrete classes of Dbx1 preBötC neurons. In a slice model of breathing with ~ 5 s cycle period, putatively rhythmogenic Type-1 Dbx1 preBötC neurons activate 100-300 ms prior to Type-2 neurons, putatively specialized for output pattern, and 300-500 ms prior to the inspiratory motor output. We sequenced Type-1 and Type-2 transcriptomes and identified differential expression of 123 genes including ionotropic receptors (Gria3, Gabra1) that may explain their preinspiratory activation profiles and Ca2+ signaling (Cracr2a, Sgk1) involved in inspiratory and sigh bursts. Surprisingly, neuropeptide receptors that influence breathing (e.g., µ-opioid and bombesin-like peptide receptors) were only sparsely expressed, which suggests that cognate peptides and opioid drugs exert their profound effects on a small fraction of the preBötC core. These data in the public domain help explain the neural origins of breathing.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/fisiología , Neuronas Motoras/fisiología , Transcriptoma/genética , Animales , Animales Recién Nacidos , Fenómenos Electrofisiológicos , Expresión Génica , Ratones , Ratones Transgénicos , Respiración
17.
PLoS One ; 17(1): e0262916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35089938

RESUMEN

The current study aimed to further address important questions regarding the therapeutic efficacy of omega-3 fatty acids for various behavioral and neuroimmune aspects of the Fmr1 phenotype. To address these questions, our experimental design utilized two different omega-3 fatty acid administration timepoints, compared to both standard laboratory chow controls ("Standard") and a diet controlling for the increase in fat content ("Control Fat"). In the first paradigm, post-weaning supplementation (after postnatal day 21) with the omega-3 fatty acid diet ("Omega-3") reversed deficits in startle threshold, but not deficits in prepulse inhibition, and the effect on startle threshold was not specific to the Omega-3 diet. However, post-weaning supplementation with both experimental diets also impaired acquisition of a fear response, recall of the fear memory and contextual fear conditioning compared to the Standard diet. The post-weaning Omega-3 diet reduced hippocampal expression of IL-6 and this reduction of IL-6 was significantly associated with diminished performance in the fear conditioning task. In the perinatal experimental paradigm, the Omega-3 diet attenuated hyperactivity and acquisition of a fear response. Additionally, perinatal exposure to the Control Fat diet (similar to a "Western" diet) further diminished nonsocial anxiety in the Fmr1 knockout. This study provides significant evidence that dietary fatty acids throughout the lifespan can significantly impact the behavioral and neuroimmune phenotype of the Fmr1 knockout model.


Asunto(s)
Ansiedad , Conducta Animal/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Hipocampo , Aprendizaje por Laberinto/efectos de los fármacos , Animales , Ansiedad/dietoterapia , Ansiedad/genética , Ansiedad/metabolismo , Ansiedad/fisiopatología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Ratones , Ratones Noqueados
18.
Sci Data ; 9(1): 457, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907922

RESUMEN

Neurons in the brainstem preBötzinger complex (preBötC) generate the rhythm and rudimentary motor pattern for inspiratory breathing movements. We performed whole-cell patch-clamp recordings from inspiratory neurons in the preBötC of neonatal mouse slices that retain breathing-related rhythmicity in vitro. We classified neurons based on their electrophysiological properties and genetic background, and then aspirated their cellular contents for single-cell RNA sequencing (scRNA-seq). This data set provides the raw nucleotide sequences (FASTQ files) and annotated files of nucleotide sequences mapped to the mouse genome (mm10 from Ensembl), which includes the fragment counts, gene lengths, and fragments per kilobase of transcript per million mapped reads (FPKM). These data reflect the transcriptomes of the neurons that generate the rhythm and pattern for inspiratory breathing movements.


Asunto(s)
Neuronas , Centro Respiratorio , Transcriptoma , Animales , Animales Recién Nacidos , Ratones , Neuronas/fisiología , Técnicas de Placa-Clamp , Respiración , Centro Respiratorio/citología , Centro Respiratorio/fisiología , Análisis de la Célula Individual
19.
Phys Biol ; 8(2): 026015, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21471635

RESUMEN

Models of calcium (Ca(2 +)) release sites derived from continuous-time Markov chain (CTMC) models of intracellular Ca(2 +) channels exhibit collective gating reminiscent of the experimentally observed phenomenon of Ca(2 +) puffs and sparks. In order to overcome the state-space explosion that occurs in compositionally defined Ca(2 +) release site models, we have implemented an automated procedure for model reduction that replaces aggregated states of the full release site model with much simpler CTMCs that have similar within-group phase-type sojourn times and inter-group transitions. Error analysis based on comparison of full and reduced models validates the method when applied to release site models composed of 20 three-state channels that are both activated and inactivated by Ca(2 +). Although inspired by existing techniques for fitting moments of phase-type distributions, the automated reduction method for compositional Ca(2 +) release site models is unique in several respects and novel in this biophysical context.


Asunto(s)
Canales de Calcio , Calcio/metabolismo , Activación del Canal Iónico , Modelos Biológicos , Animales , Humanos , Cadenas de Markov
20.
Forensic Sci Int Synerg ; 3: 100130, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33354665

RESUMEN

The use of forensic dye analysis in the field of cultural heritage is introduced, and a case study is presented determining the dating of a potentially important textile fragment from the Cleveland Museum of Art. The fragment, attributed on stylistic grounds to the 15th century, is purportedly the oldest surviving example of a Persian knotted-pile silk carpet. Raman spectroscopy combined with liquid chromatography - mass spectrometry determined the dyes used in the fragment include Metanil yellow, Congo red, and indigo, possibly in its synthetic form. Based on the dates of introduction for these dyes (1879, 1884, and 1897, respectively) and the first appearance of the textile fragment in 1928, the object is shown to be almost certainly a late 19th or early 20th century creation. Furthermore, impurities found in the red dye are suggested as potential markers of a pre-1970s synthetic route for manufacturing Congo red or possibly degraded Congo red due to environmental pollutants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA