Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 576, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858654

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is a complex disorder that has become a high prevalence global health problem, with diabetes being its predominant pathophysiologic driver. Autosomal genetic variation only explains some of the predisposition to kidney disease. Variations in the mitochondrial genome (mtDNA) and nuclear-encoded mitochondrial genes (NEMG) are implicated in susceptibility to kidney disease and CKD progression, but they have not been thoroughly explored. Our aim was to investigate the association of variation in both mtDNA and NEMG with CKD (and related traits), with a particular focus on diabetes. METHODS: We used the UK Biobank (UKB) and UK-ROI, an independent collection of individuals with type 1 diabetes mellitus (T1DM) patients. RESULTS: Fourteen mitochondrial variants were associated with estimated glomerular filtration rate (eGFR) in UKB. Mitochondrial variants and haplogroups U, H and J were associated with eGFR and serum variables. Mitochondrial haplogroup H was associated with all the serum variables regardless of the presence of diabetes. Mitochondrial haplogroup X was associated with end-stage kidney disease (ESKD) in UKB. We confirmed the influence of several known NEMG on kidney disease and function and found novel associations for SLC39A13, CFL1, ACP2 or ATP5G1 with serum variables and kidney damage, and for SLC4A1, NUP210 and MYH14 with ESKD. The G allele of TBC1D32-rs113987180 was associated with higher risk of ESKD in patients with diabetes (OR:9.879; CI95%:4.440-21.980; P = 2.0E-08). In UK-ROI, AGXT2-rs71615838 and SURF1-rs183853102 were associated with diabetic nephropathies, and TFB1M-rs869120 with eGFR. CONCLUSIONS: We identified novel variants both in mtDNA and NEMG which may explain some of the missing heritability for CKD and kidney phenotypes. We confirmed the role of MT-ND5 and mitochondrial haplogroup H on renal disease (serum variables), and identified the MT-ND5-rs41535848G variant, along with mitochondrial haplogroup X, associated with higher risk of ESKD. Despite most of the associations were independent of diabetes, we also showed potential roles for NEMG in T1DM.


Asunto(s)
Mitocondrias , Humanos , Masculino , Mitocondrias/genética , Femenino , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Tasa de Filtración Glomerular , Variación Genética , Haplotipos , Insuficiencia Renal Crónica/genética , ADN Mitocondrial/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/complicaciones , Polimorfismo de Nucleótido Simple , Adulto , Anciano
2.
Diabetologia ; 65(9): 1495-1509, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35763030

RESUMEN

AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. METHODS: We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. RESULTS: The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10-9; although not withstanding correction for multiple testing, p>9.3×10-9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN-RESP18, GPR158, INIP-SNX30, LSM14A and MFF; p<2.7×10-6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10-6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10-11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10-8] and negatively with tubulointerstitial fibrosis [p=2.0×10-9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10-16], and SNX30 expression correlated positively with eGFR [p=5.8×10-14] and negatively with fibrosis [p<2.0×10-16]). CONCLUSIONS/INTERPRETATION: Altogether, the results point to novel genes contributing to the pathogenesis of DKD. DATA AVAILABILITY: The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages ( https://t1d.hugeamp.org/downloads.html ; https://t2d.hugeamp.org/downloads.html ; https://hugeamp.org/downloads.html ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/metabolismo , Quinasas Similares a Doblecortina , Fibrosis , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Riñón/metabolismo , Polimorfismo de Nucleótido Simple/genética , Proteínas Serina-Treonina Quinasas/genética
3.
Gastroenterology ; 156(1): 43-45, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30243622

RESUMEN

We previously developed a tool that identified individuals who later developed esophageal adenocarcinoma (based on age, sex, body mass index, smoking status, and prior esophageal conditions) with an area under the curve of 0.80. In this study, we collected data from 329,463 individuals in the UK Biobank cohort who were tested for genetic susceptibility to esophageal adenocarcinoma (a polygenic risk score based on 18 recognized genetic variants). We found that after inclusion of this genetic information, the area under the curve for identification of individuals who developed esophageal adenocarcinoma remained at 0.80. Testing for genetic variants associated with esophageal adenocarcinoma therefore seems unlikely to improve identification of individuals at risk of esophageal adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Análisis Mutacional de ADN , Detección Precoz del Cáncer/métodos , Neoplasias Esofágicas/genética , Mutación de Línea Germinal , Polimorfismo de Nucleótido Simple , Adenocarcinoma/patología , Anciano , Técnicas de Apoyo para la Decisión , Neoplasias Esofágicas/patología , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Valor Predictivo de las Pruebas , Pronóstico , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Reino Unido
4.
Am J Transplant ; 19(8): 2262-2273, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30920136

RESUMEN

Genetic variation across the human leukocyte antigen loci is known to influence renal-transplant outcome. However, the impact of genetic variation beyond the human leukocyte antigen loci is less clear. We tested the association of common genetic variation and clinical characteristics, from both the donor and recipient, with posttransplant eGFR at different time-points, out to 5 years posttransplantation. We conducted GWAS meta-analyses across 10 844 donors and recipients from five European ancestry cohorts. We also analyzed the impact of polygenic risk scores (PRS), calculated using genetic variants associated with nontransplant eGFR, on posttransplant eGFR. PRS calculated using the recipient genotype alone, as well as combined donor and recipient genotypes were significantly associated with eGFR at 1-year posttransplant. Thirty-two percent of the variability in eGFR at 1-year posttransplant was explained by our model containing clinical covariates (including weights for death/graft-failure), principal components and combined donor-recipient PRS, with 0.3% contributed by the PRS. No individual genetic variant was significantly associated with eGFR posttransplant in the GWAS. This is the first study to examine PRS, composed of variants that impact kidney function in the general population, in a posttransplant context. Despite PRS being a significant predictor of eGFR posttransplant, the effect size of common genetic factors is limited compared to clinical variables.


Asunto(s)
Marcadores Genéticos , Variación Genética , Rechazo de Injerto/diagnóstico , Trasplante de Riñón/efectos adversos , Riñón/fisiopatología , Complicaciones Posoperatorias/diagnóstico , Medición de Riesgo/métodos , Adulto , Europa (Continente)/epidemiología , Femenino , Estudios de Seguimiento , Estudio de Asociación del Genoma Completo , Tasa de Filtración Glomerular , Rechazo de Injerto/epidemiología , Rechazo de Injerto/genética , Supervivencia de Injerto , Humanos , Fallo Renal Crónico/genética , Fallo Renal Crónico/cirugía , Pruebas de Función Renal , Donadores Vivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/genética , Pronóstico , Estudios Retrospectivos , Factores de Riesgo , Receptores de Trasplantes/estadística & datos numéricos
5.
Dev Dyn ; 243(1): 172-81, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24307265

RESUMEN

BACKGROUND: Hematopoiesis is a paradigm for developmental processes, hierarchically organized, with stem cells at its origin. Hematopoietic stem cells (HSCs) replenish progenitor and precursor cells of multiple lineages, which normally differentiate into short-lived mature circulating cells. Hematopoiesis has provided insight into the molecular basis of tissue homeostasis and malignancy. Malignant hematopoiesis, in particular acute myeloid leukemia (AML), results from impaired development or differentiation of HSCs and progenitors. Co-overexpression of HOX and TALE genes, particularly the HOXA cluster and MEIS1, is associated with AML. Clinically relevant models of AML are required to advance drug development for an aging patient cohort. RESULTS: Molecular analysis identified altered gene, microRNA, and protein expression in HOXA9/Meis1 leukemic bone marrow compared to normal controls. A candidate drug screen identified the c-Met inhibitor SU11274 for further analysis. Altered cell cycle status, apoptosis, differentiation, and impaired colony formation were shown for SU11274 in AML cell lines and primary leukemic bone marrow. CONCLUSIONS: The clonal HOXA9/Meis1 AML model is amenable to drug screening analysis. The data presented indicate that human AML cells respond in a similar manner to the HOXA9/Meis1 cells, indicating pre-clinical relevance of the mouse model.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Indoles/uso terapéutico , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Piperazinas/uso terapéutico , Proteínas Proto-Oncogénicas c-met/metabolismo , Sulfonamidas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones , MicroARNs/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética
6.
Kidney Int Rep ; 8(2): 330-340, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36815102

RESUMEN

Introduction: Kidney transplantation remains the gold standard of treatment for end-stage renal disease (ESRD), with improved patient outcomes compared with dialysis. Epigenome-Wide Association Analysis (EWAS) of DNA methylation may identify markers that contribute to an individual's risk of adverse transplant outcomes, yet only a limited number of EWAS have been conducted in kidney transplant recipients. This EWAS aimed to interrogate the methylation profile of a kidney transplant recipient cohort with minimal posttransplant complications, exploring differences in samples pretransplant and posttransplant. Methods: We compared differentially methylated cytosine-phosphate-guanine sites (dmCpGs) in samples derived from peripheral blood mononuclear cells of the same kidney transplant recipients, collected both pretransplant and posttransplant (N = 154), using the Infinium MethylationEPIC microarray (Illumina, San Diego, CA). Recipients received kidneys from deceased donors and had a mean of 17 years of follow-up. Results: Five top-ranked dmCpGs were significantly different at false discovery rate (FDR) adjusted P ≤ 9 × 10-8; cg23597162 within JAZF1, cg25187293 within BTNL8, cg17944885, located between ZNF788P and ZNF625-ZNF20, cg14655917 located between ASB4 and PDK4 and cg09839120 located between GIMAP6 and EIF2AP3. Conclusion: Five dmCpGs were identified at the generally accepted EWAS critical significance level of FDR adjusted P (P FDRadj) ≤ 9 × 10-8, including cg23597162 (within JAZF1) and cg17944885, which have prior associations with chronic kidney disease (CKD). Comparing individuals with no evidence of posttransplant complications (N = 105) demonstrated that 693,555 CpGs (89.57%) did not display any significant difference in methylation (P FDRadj ≥ 0.05), thereby this study establishes an important reference for future epigenetic studies that seek to identify markers of posttransplant complications.

7.
Econ Hum Biol ; 49: 101233, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36812724

RESUMEN

Time preference is a measure used to ascertain the level of which individuals prefer smaller, immediate rewards over larger, delayed rewards. We explored how an individual's time preference associates with their epigenetic profile. Time preferences were ascertained by asking participants of the Northern Ireland COhort for the Longitudinal study of Ageing to make a series of choices between two hypothetical income scenarios. From these, eight 'time preference' categories were derived, ranging from "patient" to "impatient" on an ordinal scale. The Infinium High Density Methylation Assay, MethylationEPIC (Illumina) was used to evaluate the status of 862,927 CpGs. Time preference and DNA methylation data were obtained for 1648 individuals. Four analyses were conducted, assessing the methylation patterns at single site resolution between patient and impatient individuals using two adjustment models. In this discovery cohort analysis, two CpG sites were identified with significantly different levels of methylation (p < 9 × 10-8) between the individuals allocated to the patient group and the remaining population following adjustment for covariates; cg08845621 within CD44 and cg18127619 within SEC23A. Neither of these genes have previously been linked to time preference. Epigenetic modifications have not previously been linked to time preference using a population cohort but they may represent important biomarkers of accumulated, complex determinants of this trait. Further analysis is warranted of both the top-ranked results and of DNA methylation as an important link between measurable biomarkers and health behaviours.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Anciano , Estudios Longitudinales , Envejecimiento , Biomarcadores , Receptores de Hialuranos/genética , Proteínas de Transporte Vesicular/genética
8.
Br J Ophthalmol ; 107(12): 1873-1879, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36216411

RESUMEN

PURPOSE: To report prevalence and risk factor associations for age-related macular degeneration (AMD) and AMD features from multimodal retinal grading in a multidisciplinary longitudinal population-based study of aging in Northern Ireland. STUDY DESIGN: Population-based longitudinal cohort study. METHODS: Retinal imaging at the Norther Ireland Cohort for the Longitudinal Aging Study health assessment included stereo Colour Fundus Photography (CFP) (Canon CX-1, Tokyo, Japan) and Spectral-Domain Optical Coherence Tomography (SD-OCT) ((Heidelberg Retinal Angopgraph (HRA)+OCT; Heidelberg Engineering, Heidelberg, Germany). Medical history and demographic information was obtained during a home interview. Descriptive statistics were used to describe the prevalence of AMD and individual AMD features. Multiple imputation followed by multiple regression modelling was used to explore risk factor associations including relationships with AMD genetic risk score. RESULTS: Retinal images from 3386 participants were available for analysis. Mean age of the sample was 63.4 (SD 9.01, range: 36-99). Population weighted prevalence of AMD using colour grading in those over 55 years was: no drusen: 6 0.4%; drusen <63 µm: 15.9%; drusen 63-125 µm: 13.7%; drusen >125 µm or pigmentary changes: 8.3%; late AMD: 1.6%. Prevalence of AMD features in those over 55 years was: OCT drusen 27.5%, complete outer retinal pigment epithelium and outer retinal atrophy (cRORA) on OCT was 4.3%, reticular drusen 3.2% and subretinal drusenoid deposits 25.7%. The genetic risk score was significantly associated with drusen and cRORA but less so for SDD alone and non-significant for hyperpigmentation or vitelliform lesions. CONCLUSIONS: Multimodal imaging-based classification has provided evidence of some divergence of genetic risk associations between classical drusen and SDD. Our findings support an urgent review of current AMD severity classification systems.


Asunto(s)
Degeneración Macular , Drusas Retinianas , Humanos , Anciano , Drusas Retinianas/diagnóstico por imagen , Drusas Retinianas/epidemiología , Estudios de Cohortes , Estudios Longitudinales , Prevalencia , Irlanda del Norte/epidemiología , Degeneración Macular/diagnóstico , Degeneración Macular/epidemiología , Factores de Riesgo , Tomografía de Coherencia Óptica/métodos , Angiografía con Fluoresceína
9.
Front Endocrinol (Lausanne) ; 14: 1081741, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926036

RESUMEN

Aim: Rare genetic variants in the CUBN gene encoding the main albumin-transporter in the proximal tubule of the kidneys have previously been associated with microalbuminuria and higher urine albumin levels, also in diabetes. Sequencing studies in isolated proteinuria suggest that these variants might not affect kidney function, despite proteinuria. However, the relation of these CUBN missense variants to the estimated glomerular filtration rate (eGFR) is largely unexplored. We hereby broadly examine the associations between four CUBN missense variants and eGFRcreatinine in Europeans with Type 1 (T1D) and Type 2 Diabetes (T2D). Furthermore, we sought to deepen our understanding of these variants in a range of single- and aggregate- variant analyses of other kidney-related traits in individuals with and without diabetes mellitus. Methods: We carried out a genetic association-based linear regression analysis between four CUBN missense variants (rs141640975, rs144360241, rs45551835, rs1801239) and eGFRcreatinine (ml/min/1.73 m2, CKD-EPIcreatinine(2012), natural log-transformed) in populations with T1D (n ~ 3,588) or T2D (n ~ 31,155) from multiple European studies and in individuals without diabetes from UK Biobank (UKBB, n ~ 370,061) with replication in deCODE (n = 127,090). Summary results of the diabetes-group were meta-analyzed using the fixed-effect inverse-variance method. Results: Albeit we did not observe associations between eGFRcreatinine and CUBN in the diabetes-group, we found significant positive associations between the minor alleles of all four variants and eGFRcreatinine in the UKBB individuals without diabetes with rs141640975 being the strongest (Effect=0.02, PeGFR_creatinine=2.2 × 10-9). We replicated the findings for rs141640975 in the Icelandic non-diabetes population (Effect=0.026, PeGFR_creatinine=7.7 × 10-4). For rs141640975, the eGFRcreatinine-association showed significant interaction with albuminuria levels (normo-, micro-, and macroalbuminuria; p = 0.03). An aggregated genetic risk score (GRS) was associated with higher urine albumin levels and eGFRcreatinine. The rs141640975 variant was also associated with higher levels of eGFRcreatinine-cystatin C (ml/min/1.73 m2, CKD-EPI2021, natural log-transformed) and lower circulating cystatin C levels. Conclusions: The positive associations between the four CUBN missense variants and eGFR in a large population without diabetes suggests a pleiotropic role of CUBN as a novel eGFR-locus in addition to it being a known albuminuria-locus. Additional associations with diverse renal function measures (lower cystatin C and higher eGFRcreatinine-cystatin C levels) and a CUBN-focused GRS further suggests an important role of CUBN in the future personalization of chronic kidney disease management in people without diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Receptores de Superficie Celular , Insuficiencia Renal Crónica , Humanos , Albúminas , Albuminuria/genética , Creatinina , Cistatina C , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Pueblo Europeo , Estudios de Asociación Genética , Tasa de Filtración Glomerular/genética , Proteinuria/genética , Insuficiencia Renal Crónica/genética , Receptores de Superficie Celular/genética
10.
Lab Med ; 53(4): 417-425, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35285909

RESUMEN

OBJECTIVE: The T-cell receptor ß constant region 1 (TRBC1) antibody can identify T-cell clonality and distinguish pathological from normal T cells. This study aims to establish optimal cutpoints for establishing monotypia and validate the diagnostic abilities of the TRBC1 antibody when used as a reflex test in conjunction with an existing T-cell antibody panel. MATERIALS AND METHODS: We used 46 normal peripheral blood specimens and examined 8 patients with reactive lymphoproliferations to determine the normal biological range of TRBC1 on CD4+ and CD8+ T cells. We also evaluated 43 patient specimens that were submitted for investigation of a lymphoproliferative disorder for CD2/CD3/CD4/CD5/CD7/CD8/CD16/CD26/CD45/CD56/TCR αß/TCR γδ, along with TRBC1 expression. The results were compared to TCR gene rearrangement patterns using polymerase chain reaction (PCR) analysis. RESULTS: Statistical analysis established differing cutoff points for establishing monotypia dependent on restricted TRBC1 or TRBC2 usage. Direct comparison with molecular analysis indicated that no specimen identified with the restricted expression of TRBC1 was reported as polyclonal by PCR with a concordance rate of 97% between a clonal PCR result and monotypic TRBC1 expression. CONCLUSION: Incorporation of the TRBC1 antibody using statistically derived cutoff points in a reflex setting for the evaluation of a suspected T-cell neoplasm improves the identification of clonal T-cell populations by flow cytometry and correlates well with molecular methods.


Asunto(s)
Trastornos Linfoproliferativos , Linfocitos T , Células Clonales , Citometría de Flujo/métodos , Humanos , Linfoma de Células T/diagnóstico , Linfoma de Células T/patología , Trastornos Linfoproliferativos/diagnóstico , Trastornos Linfoproliferativos/patología , Reacción en Cadena de la Polimerasa/métodos , Linfocitos T/citología
11.
Epigenetics ; 17(10): 1159-1172, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34696705

RESUMEN

Risk preference is a complex trait governed by psycho-social, environmental and genetic determinants. We aimed to examine how an individual's risk preference associates with their epigenetic profile.Risk preferences were ascertained by asking participants of the Northern Ireland COhort for the Longitudinal study of Ageing to make a series of choices between hypothetical income scenarios. From these, four risk preference categories were derived, ranging from risk-averse to risk-seeking. Illumina's Infinium High-Density Methylation Assay was used to evaluate the status of 862,927 CpGs.Risk preference and DNA methylation data were obtained for 1,656 individuals. The distribution of single-site DNA methylation levels between risk-averse and risk-seeking individuals was assessed whilst adjusting for age, sex and peripheral white cell counts. In this discovery cohort, 55 CpGs were identified with significantly different levels of methylation (p≤x10-5) between risk-averse and risk-seeking individuals when adjusting for the maximum number of covariates. No CpGs were significantly differentially methylated in any of the risk preference groups at an epigenome-wide association level (p<9x10-8) following covariate adjustment.Protein-coding genes NWD1 and LRP1 were among the genes in which the top-ranked dmCpGs were located for all analyses conducted. Mutations in these genes have previously been linked to neurological conditions.Epigenetic modifications have not previously been linked to risk-aversion using a population cohort, but may represent important biomarkers of accumulated, complex determinants of this trait. Several striking results from this study support further analysis of DNA methylation as an important link between measurable biomarkers and health behaviours.


Asunto(s)
Metilación de ADN , Estudio de Asociación del Genoma Completo , Anciano , Biomarcadores , Epigénesis Genética , Humanos , Estudios Longitudinales
12.
Cancers (Basel) ; 14(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35681687

RESUMEN

BACKGROUND: Telehealth has enabled access to rehabilitation throughout the pandemic. We assessed the feasibility of delivering a multi-disciplinary, multi-component rehabilitation programme (ReStOre@Home) to cancer survivors via telehealth. METHODS: This single-arm mixed methods feasibility study recruited participants who had completed curative treatment for oesophago-gastric cancer for a 12-week telehealth rehabilitation programme, involving group resistance training, remotely monitored aerobic training, one-to-one dietetic counselling, one-to-one support calls and group education. The primary outcome was feasibility, measured by recruitment rates, attendance, retention, incidents, acceptability, Telehealth Usability Questionnaire (TUQ) and analysis of semi-structured interviews. RESULTS: Characteristics of the twelve participants were: 65.42 ± 7.24 years; 11 male; 10.8 ± 3.9 months post-op; BMI 25.61 ± 4.37; received neoadjuvant chemotherapy 7/12; received adjuvant chemotherapy 4/12; hospital length of stay 16 days (median). Recruitment rate was 32.4%, and retention rate was 75%. Mean attendance was: education 90%; dietetics 90%; support calls 84%; resistance training 78%. Mean TUQ score was 4.69/5. Adaptations to the planned resistance training programme were required. Participants reported that ReStOre@Home enhanced physical and psychological wellbeing, and online delivery was convenient. Some reported a preference for in-person contact but felt that the online group sessions provided adequate peer support. CONCLUSION: Telehealth delivery of ReStOre@Home was most feasible in individuals with moderate to high levels of digital skills. Low level of digitals skills was a barrier to recruitment and retention. Participants reported high levels of programme adherence and participant satisfaction. Adaptations to future programmes, including introducing elements of in-person contact, are required.

13.
Nat Commun ; 13(1): 7891, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550108

RESUMEN

Type 1 diabetes affects over nine million individuals globally, with approximately 40% developing diabetic kidney disease. Emerging evidence suggests that epigenetic alterations, such as DNA methylation, are involved in diabetic kidney disease. Here we assess differences in blood-derived genome-wide DNA methylation associated with diabetic kidney disease in 1304 carefully characterised individuals with type 1 diabetes and known renal status from two cohorts in the United Kingdom-Republic of Ireland and Finland. In the meta-analysis, we identify 32 differentially methylated CpGs in diabetic kidney disease in type 1 diabetes, 18 of which are located within genes differentially expressed in kidneys or correlated with pathological traits in diabetic kidney disease. We show that methylation at 21 of the 32 CpGs predict the development of kidney failure, extending the knowledge and potentially identifying individuals at greater risk for diabetic kidney disease in type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Humanos , Metilación de ADN/genética , Epigenoma , Nefropatías Diabéticas/genética , Epigénesis Genética , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Biomarcadores , ADN , Estudio de Asociación del Genoma Completo , Islas de CpG
14.
Orphanet J Rare Dis ; 15(1): 107, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345347

RESUMEN

BACKGROUND: Patients with rare diseases face unique challenges in obtaining a diagnosis, appropriate medical care and access to support services. Whole genome and exome sequencing have increased identification of causal variants compared to single gene testing alone, with diagnostic rates of approximately 50% for inherited diseases, however integrated multi-omic analysis may further increase diagnostic yield. Additionally, multi-omic analysis can aid the explanation of genotypic and phenotypic heterogeneity, which may not be evident from single omic analyses. MAIN BODY: This scoping review took a systematic approach to comprehensively search the electronic databases MEDLINE, EMBASE, PubMed, Web of Science, Scopus, Google Scholar, and the grey literature databases OpenGrey / GreyLit for journal articles pertaining to multi-omics and rare disease, written in English and published prior to the 30th December 2018. Additionally, The Cancer Genome Atlas publications were searched for relevant studies and forward citation searching / screening of reference lists was performed to identify further eligible articles. Following title, abstract and full text screening, 66 articles were found to be eligible for inclusion in this review. Of these 42 (64%) were studies of multi-omics and rare cancer, two (3%) were studies of multi-omics and a pre-cancerous condition, and 22 (33.3%) were studies of non-cancerous rare diseases. The average age of participants (where known) across studies was 39.4 years. There has been a significant increase in the number of multi-omic studies in recent years, with 66.7% of included studies conducted since 2016 and 33% since 2018. Fourteen combinations of multi-omic analyses for rare disease research were returned spanning genomics, epigenomics, transcriptomics, proteomics, phenomics and metabolomics. CONCLUSIONS: This scoping review emphasises the value of multi-omic analysis for rare disease research in several ways compared to single omic analysis, ranging from the provision of a diagnosis, identification of prognostic biomarkers, distinct molecular subtypes (particularly for rare cancers), and identification of novel therapeutic targets. Moving forward there is a critical need for collaboration of multi-omic rare disease studies to increase the potential to generate robust outcomes and development of standardised biorepository collection and reporting structures for multi-omic studies.


Asunto(s)
Genómica , Enfermedades Raras , Adulto , Epigenómica , Humanos , Metabolómica , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Flujo de Trabajo
15.
Methods Mol Biol ; 2067: 205-240, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31701455

RESUMEN

Multiple genetic strategies are available to help improve understanding of diabetic nephropathy. This methods chapter provides an overview of phenotype considerations specific to diabetic nephropathy and biobank essentials, and provides detailed methodology for a common benchtop wet-lab approach (Ion Torrent semiconductor sequencing) including in silico genetic variant identification from next-generation sequencing data to identify genetic risk factors for diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/genética , Estudios de Asociación Genética/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Proyectos de Investigación , Estudios de Casos y Controles , Biología Computacional , Estudios Transversales , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/orina , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/orina , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/orina , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo
16.
Methods Mol Biol ; 2067: 241-275, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31701456

RESUMEN

Multiple genetic strategies are available to help improve understanding of diabetic nephropathy. This chapter provides detailed methodology for a single-nucleotide polymorphism association study and meta-analysis, using a protocol suitable for targeted SNP or genome-wide association studies, to identify genetic risk factors for diabetic nephropathy.


Asunto(s)
Biología Computacional/métodos , Nefropatías Diabéticas/genética , Metaanálisis como Asunto , Biología Computacional/instrumentación , Computadores , Conjuntos de Datos como Asunto , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Programas Informáticos
17.
Front Cell Dev Biol ; 8: 561907, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178681

RESUMEN

A subset of individuals with type 1 diabetes will develop diabetic kidney disease (DKD). DKD is heritable and large-scale genome-wide association studies have begun to identify genetic factors that influence DKD. Complementary to genetic factors, we know that a person's epigenetic profile is also altered with DKD. This study reports analysis of DNA methylation, a major epigenetic feature, evaluating methylome-wide loci for association with DKD. Unique features (n = 485,577; 482,421 CpG probes) were evaluated in blood-derived DNA from carefully phenotyped White European individuals diagnosed with type 1 diabetes with (cases) or without (controls) DKD (n = 677 samples). Explicitly, 150 cases were compared to 100 controls using the 450K array, with subsequent analysis using data previously generated for a further 96 cases and 96 controls on the 27K array, and de novo methylation data generated for replication in 139 cases and 96 controls. Following stringent quality control, raw data were quantile normalized and beta values calculated to reflect the methylation status at each site. The difference in methylation status was evaluated between cases and controls; resultant P-values for array-based data were adjusted for multiple testing. Genes with significantly increased (hypermethylated) and/or decreased (hypomethylated) levels of DNA methylation were considered for biological relevance by functional enrichment analysis using KEGG pathways. Twenty-two loci demonstrated statistically significant fold changes associated with DKD and additional support for these associated loci was sought using independent samples derived from patients recruited with similar inclusion criteria. Markers associated with CCNL1 and ZNF187 genes are supported as differentially regulated loci (P < 10-8), with evidence also presented for AFF3, which has been identified from a meta-analysis and subsequent replication of genome-wide association studies. Further supporting evidence for differential gene expression in CCNL1 and ZNF187 is presented from kidney biopsy and blood-derived RNA in people with and without kidney disease from NephroSeq. Evidence confirming that methylation sites influence the development of DKD may aid risk prediction tools and stimulate research to identify epigenomic therapies which might be clinically useful for this disease.

18.
BMJ Open Ophthalmol ; 4(1): e000342, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31799411

RESUMEN

Rare ophthalmic diseases have a devastating impact on a patient's vision and consequently negatively affect their independence, ability to work and overall quality of life. Methylation is an important emerging biomarker of disease and may improve understanding of rare ophthalmic disorders. This systematic review sought to identify and evaluate literature on methylation and rare ophthalmic disease. MEDLINE, EMBASE, PubMed, Cochrane Database of Systematic Reviews and grey literature resources were searched for publications prior to 20 August 2019. Articles written in English which featured key terms such as 'methylation' and rare ophthalmic diseases were included. Titles, abstracts, keywords and full texts of publications were screened, as well as reference lists for reverse citations and Web of Science 'cited reference search' for forward citation searching. Study characteristics were extracted, and methodological rigour appraised using a standardised template. Fourteen articles were selected for full inclusion. Rare ophthalmic conditions include congenital fibrosis of extraocular muscles, retinitis pigmentosa, Fuchs endothelial corneal dystrophy, granular corneal dystrophy, choroideraemia, brittle cornea syndrome, retinopathy of prematurity, keratoconus and congenital cataracts. Outcomes include identification of methylation as contributor to disease and identification of potential novel therapeutic targets. The studies included were heterogeneous with no scope for meta-analysis following review; a narrative synthesis was undertaken. Differential methylation has been identified in a small number of rare ophthalmic diseases and few studies have been performed to date. Further multiomic research will improve understanding of rare eye diseases and hopefully lead to improved provision of diagnostic/prognostic biomarkers, and help identify novel therapeutic targets.

19.
Front Genet ; 10: 453, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214239

RESUMEN

Chronic kidney disease (CKD) is a major global health problem with an increasing prevalence partly driven by aging population structure. Both genomic and environmental factors contribute to this complex heterogeneous disease. CKD heritability is estimated to be high (30-75%). Genome-wide association studies (GWAS) and GWAS meta-analyses have identified several genetic loci associated with CKD, including variants in UMOD, SHROOM3, solute carriers, and E3 ubiquitin ligases. However, these genetic markers do not account for all the susceptibility to CKD, and the causal pathways remain incompletely understood; other factors must be contributing to the missing heritability. Less investigated biological factors such as telomere length; mitochondrial proteins, encoded by nuclear genes or specific mitochondrial DNA (mtDNA) encoded genes; structural variants, such as copy number variants (CNVs), insertions, deletions, inversions and translocations are poorly covered and may explain some of the missing heritability. The sex chromosomes, often excluded from GWAS studies, may also help explain gender imbalances in CKD. In this review, we outline recent findings on molecular biomarkers for CKD (telomeres, CNVs, mtDNA variants, sex chromosomes) that typically have received less attention than gene polymorphisms. Shorter telomere length has been associated with renal dysfunction and CKD progression, however, most publications report small numbers of subjects with conflicting findings. CNVs have been linked to congenital anomalies of the kidney and urinary tract, posterior urethral valves, nephronophthisis and immunoglobulin A nephropathy. Information on mtDNA biomarkers for CKD comes primarily from case reports, therefore the data are scarce and diverse. The most consistent finding is the A3243G mutation in the MT-TL1 gene, mainly associated with focal segmental glomerulosclerosis. Only one GWAS has found associations between X-chromosome and renal function (rs12845465 and rs5987107). No loci in the Y-chromosome have reached genome-wide significance. In conclusion, despite the efforts to find the genetic basis of CKD, it remains challenging to explain all of the heritability with currently available methods and datasets. Although additional biomarkers have been investigated in less common suspects such as telomeres, CNVs, mtDNA and sex chromosomes, hidden heritability in CKD remains elusive, and more comprehensive approaches, particularly through the integration of multiple -"omics" data, are needed.

20.
BMJ Open ; 9(4): e026777, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048445

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is defined by abnormalities in kidney structure and/or function present for more than 3 months. Worldwide, both the incidence and prevalence rates of CKD are increasing. The renin-angiotensin-aldosterone system (RAAS) regulates fluid and electrolyte balance through the kidney. RAAS activation is associated with hypertension, which is directly implicated in causation and progression of CKD. RAAS blockade, using drugs targeting individual RAAS mediators and receptors, has proven to be renoprotective. OBJECTIVES: To assess genomic variants present within RAAS genes, ACE, ACE2, AGT, AGTR1, AGTR2 and REN, for association with CKD. DESIGN AND DATA SOURCES: A systematic review and meta-analysis of observational research was performed to evaluate the RAAS gene polymorphisms in CKD using both PubMed and Web of Science databases with publication date between the inception of each database and 31 December 2018. Eligible articles included case-control studies of a defined kidney disease and included genotype counts. ELIGIBILITY CRITERIA: Any paper was removed from the analysis if it was not written in English or Spanish, was a non-human study, was a paediatric study, was not a case-control study, did not have a renal disease phenotype, did not include data for the genes, was a gene expression-based study or had a pharmaceutical drug focus. RESULTS: A total of 3531 studies were identified, 114 of which met the inclusion criteria. Genetic variants reported in at least three independent publications for populations with the same ethnicity were determined and quantitative analyses performed. Three variants returned significant results in populations with different ethnicities at p<0.05: ACE insertion, AGT rs699-T allele and AGTR1 rs5186-A allele; each variant was associated with a reduced risk of CKD development. CONCLUSIONS: Further biological pathway and functional analyses of the RAAS gene polymorphisms will help define how variation in components of the RAAS pathway contributes to CKD.


Asunto(s)
Angiotensinógeno , Peptidil-Dipeptidasa A , Receptor de Angiotensina Tipo 1 , Insuficiencia Renal Crónica/genética , Sistema Renina-Angiotensina/genética , Femenino , Genotipo , Humanos , Masculino , Estudios Observacionales como Asunto , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA