Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 612(7940): 488-494, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450990

RESUMEN

Insect societies are tightly integrated, complex biological systems in which group-level properties arise from the interactions between individuals1-4. However, these interactions have not been studied systematically and therefore remain incompletely known. Here, using a reverse engineering approach, we reveal that unlike solitary insects, ant pupae extrude a secretion derived from the moulting fluid that is rich in nutrients, hormones and neuroactive substances. This secretion elicits parental care behaviour and is rapidly removed and consumed by the adults. This behaviour is crucial for pupal survival; if the secretion is not removed, pupae develop fungal infections and die. Analogous to mammalian milk, the secretion is also an important source of early larval nutrition, and young larvae exhibit stunted growth and decreased survival without access to the fluid. We show that this derived social function of the moulting fluid generalizes across the ants. This secretion thus forms the basis of a central and hitherto overlooked interaction network in ant societies, and constitutes a rare example of how a conserved developmental process can be co-opted to provide the mechanistic basis of social interactions. These results implicate moulting fluids in having a major role in the evolution of ant eusociality.


Asunto(s)
Hormigas , Líquidos Corporales , Muda , Pupa , Conducta Social , Animales , Hormigas/crecimiento & desarrollo , Hormigas/fisiología , Larva/fisiología , Muda/fisiología , Pupa/fisiología , Líquidos Corporales/fisiología
2.
PLoS Biol ; 22(5): e3002629, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805504

RESUMEN

Despite significant progress in understanding epigenetic reprogramming of cells, the mechanistic basis of "organ reprogramming" by (epi-)gene-environment interactions remained largely obscure. Here, we use the ether-induced haltere-to-wing transformations in Drosophila as a model for epigenetic "reprogramming" at the whole organism level. Our findings support a mechanistic chain of events explaining why and how brief embryonic exposure to ether leads to haltere-to-wing transformations manifested at the larval stage and on. We show that ether interferes with protein integrity in the egg, leading to altered deployment of Hsp90 and widespread repression of Trithorax-mediated establishment of active H3K4me3 chromatin marks throughout the genome. Despite this global reduction, Ubx targets and wing development genes preferentially retain higher levels of H3K4me3 that predispose these genes for later up-regulation in the larval haltere disc, hence the wing-like outcome. Consistent with compromised protein integrity during the exposure, the penetrance of bithorax transformations increases by genetic or chemical reduction of Hsp90 function. Moreover, joint reduction in Hsp90 and trx gene dosage can cause bithorax transformations without exposure to ether, supporting an underlying epistasis between Hsp90 and trx loss-of-functions. These findings implicate environmental disruption of protein integrity at the onset of histone methylation with altered epigenetic regulation of developmental patterning genes. The emerging picture provides a unique example wherein the alleviation of the Hsp90 "capacitor function" by the environment drives a morphogenetic shift towards an ancestral-like body plan. The morphogenetic impact of chaperone response during a major setup of epigenetic patterns may be a general scheme for organ transformation by environmental cues.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Epigénesis Genética , Proteínas HSP90 de Choque Térmico , Histonas , Alas de Animales , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histonas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Alas de Animales/metabolismo , Alas de Animales/crecimiento & desarrollo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Interacción Gen-Ambiente , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Cromatina/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Memoria Epigenética , Factores de Transcripción
3.
Dev Biol ; 441(1): 83-94, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29920253

RESUMEN

FtsZ proteins of the FtsZ1 and FtsZ2 families play important roles in the initiation and progression of plastid division in plants and green algae. Arabidopsis possesses a single FTSZ1 member and two FTSZ2 members, FTSZ2-1 and FTSZ2-2. The contribution of these to chloroplast division and partitioning has been mostly investigated in leaf mesophyll tissues. Here, we assessed the involvement of the three FtsZs in plastid division at earlier stages of chloroplast differentiation. To this end, we studied the effect of the absence of specific FtsZ proteins on plastids in the vegetative shoot apex, where the proplastid-to-chloroplast transition takes place. We found that the relative contribution of the two major leaf FtsZ isoforms, FtsZ1 and FtsZ2-1, to the division process varies with cell lineage and position within the shoot apex. While FtsZ2-1 dominates division in the L1 and L3 layers of the shoot apical meristem (SAM), in the L2 layer, FtsZ1 and FtsZ2-1 contribute equally toward the process. Depletion of the third isoform, FtsZ2-2, generally resulted in stronger effects in the shoot apex than those observed in mature leaves. The implications of these findings, along with additional observations made in this work, to our understanding of the mechanisms and regulation of plastid proliferation in the shoot apex are discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Meristema/metabolismo , Hojas de la Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Meristema/genética , Hojas de la Planta/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
J Physiol ; 592(11): 2343-55, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24535443

RESUMEN

Transgenerational persistence of parental responses to environmental stimuli has been reported in various organisms, but the underlying mechanisms remain underexplored. In one of these reported examples, we have shown that exposure of fly larvae to G418 antibiotic leads to non-Mendelian inheritance of ectopic induction of certain developmental genes. Here we investigate if this inheritance involves changes in mRNA composition within the early, maternal-stage offspring embryos of exposed flies. Exposure to G418 in F1 modified the maternal RNA levels of many genes in their early (F2) embryos. This includes reduction of maternal Polycomb group genes which persisted in the following generation of embryos (F3). To investigate the functional meaning of this reduction, we compared genetically normal embryos of Polycomb mutant females to normal embryos of normal females. Analysis with two different alleles of Polycomb, Pc1 and Pc3, revealed that maternal reduction in Polycomb gene dosage has a positive influence on the inheritance of induced expression. Together, this shows that exposure to G418 stress reduces the maternal levels of Polycomb in the offspring embryos and this reduction contributes to the inheritance of induced expression.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Complejo Represivo Polycomb 1/metabolismo , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Amebicidas/toxicidad , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epigénesis Genética , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Gentamicinas/toxicidad , Larva/efectos de los fármacos , Larva/genética , Larva/fisiología , Complejo Represivo Polycomb 1/genética , Estrés Fisiológico/efectos de los fármacos
5.
Planta ; 232(1): 165-78, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20383645

RESUMEN

Auxin is a key plant hormone that regulates various aspects of plant development. However, the mechanisms integrating auxin growth effects with stress responses are not fully understood. In this study, we investigated the possible role of calmodulin-binding transcription activator 1 (CAMTA1), an Arabidopsis thaliana calcium/calmodulin-binding transcription activator, in auxin signaling and its responses to different stresses. Plants harboring the AtCAMTA1 promoter fused to the GUS reporter gene revealed cell-specific expression patterns reminiscent of auxin responses. The responsiveness of CAMTA1 to auxin was further assessed by chemical disturbances in polar auxin transport, and by RT-PCR analysis of gene expression of dissected leaf sections from plants exposed to the auxin transport inhibitor NPA. Furthermore, the intensity and cell-specific expression patterns of CAMTA1 changed significantly and differentially on exposure to increasing salt concentrations and heat. Transcriptome analysis of a camta1 T-DNA insertion mutant revealed 63 up-regulated genes, of which 17 are associated with auxin signaling. Finally, analysis of hypocotyl elongation in the presence and absence of auxin revealed that camta1 T-DNA insertion mutants and CAMTA1-repressor lines are hyper-responsive to auxin compared to wild-type seedlings. Thus, CAMTA1 participates in auxin signaling and responds to abiotic stresses.


Asunto(s)
Arabidopsis/fisiología , Proteínas de Unión al Calcio/fisiología , Ácidos Indolacéticos/metabolismo , Transducción de Señal/fisiología , Estrés Fisiológico , Arabidopsis/metabolismo , Secuencia de Bases , Proteínas de Unión al Calcio/genética , Cartilla de ADN , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Plant Signal Behav ; 5(10): 1311-4, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20930517

RESUMEN

Phenotypic plasticity is an adaptive feature of all organisms, which, in land plants, entails changes in orientation of growth (tropism), patterns of development, organ architecture, timing of developmental processes, and resource allocation. However, little is known about the molecular components that integrate exogenous environmental cues with internal hormonal signaling pathways. This addendum describes a role for calcium-regulated calmodulin-binding transcription 1 (CAMTA1) in auxin signaling and stress responses. We discuss possible mechanisms that may underlie this role of CAMTA1, and speculate on the more general roles of CAMTAs in auxin responses and phenotypic plasticity.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Ácidos Indolacéticos/metabolismo , Transactivadores/metabolismo , Arabidopsis/metabolismo , Transporte Biológico , Ambiente , Homeostasis , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Modelos Biológicos , Familia de Multigenes , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA