Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 168(3): 312-327, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38317429

RESUMEN

To survive, individuals must learn to associate cues in the environment with emotionally relevant outcomes. This association is partially mediated by the nucleus accumbens (NAc), a key brain region of the reward circuit that is mainly composed by GABAergic medium spiny neurons (MSNs), that express either dopamine receptor D1 or D2. Recent studies showed that both populations can drive reward and aversion, however, the activity of these neurons during appetitive and aversive Pavlovian conditioning remains to be determined. Here, we investigated the relevance of D1- and D2-neurons in associative learning, by measuring calcium transients with fiber photometry during appetitive and aversive Pavlovian tasks in mice. Sucrose was used as a positive valence unconditioned stimulus (US) and foot shock was used as a negative valence US. We show that during appetitive Pavlovian conditioning, D1- and D2-neurons exhibit a general increase in activity in response to the conditioned stimuli (CS). Interestingly, D1- and D2-neurons present distinct changes in activity after sucrose consumption that dynamically evolve throughout learning. During the aversive Pavlovian conditioning, D1- and D2-neurons present an increase in the activity in response to the CS and to the US (shock). Our data support a model in which D1- and D2-neurons are concurrently activated during appetitive and aversive conditioning.


Asunto(s)
Núcleo Accumbens , Receptores de Dopamina D1 , Animales , Ratones , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Condicionamiento Clásico , Neuronas/metabolismo , Reacción de Prevención/fisiología , Sacarosa/farmacología
2.
Cell Commun Signal ; 21(1): 35, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782237

RESUMEN

BACKGROUND: Extracellular vesicles (EVs), including small EVs (sEVs) such as exosomes, exhibit great potential for the diagnosis and treatment of brain disorders, representing a valuable tool for precision medicine. The latter demands high-quality human biospecimens, especially in complex disorders in which pathological and specimen heterogeneity, as well as diverse individual clinical profile, often complicate the development of precision therapeutic schemes and patient-tailored treatments. Thus, the collection and characterization of physiologically relevant sEVs are of the utmost importance. However, standard brain EV isolation approaches rely on tissue dissociation, which can contaminate EV fractions with intracellular vesicles. METHODS: Based on multiscale analytical platforms such as cryo-EM, label-free proteomics, advanced flow cytometry, and ExoView analyses, we compared and characterized the EV fraction isolated with this novel method with a classical digestion-based EV isolation procedure. Moreover, EV biogenesis was pharmacologically manipulated with either GW4869 or picrotoxin to assess the validity of the spontaneous-release method, while the injection of labelled-EVs into the mouse brain further supported the integrity of the isolated vesicles. RESULTS: We hereby present an efficient purification method that captures a sEV-enriched population spontaneously released by mouse and human brain tissue. In addition, we tested the significance of the release method under conditions where biogenesis/secretion of sEVs was pharmacologically manipulated, as well as under animals' exposure to chronic stress, a clinically relevant precipitant of brain pathologies, such as depression and Alzheimer's disease. Our findings show that the released method monitors the drug-evoked inhibition or enhancement of sEVs secretion while chronic stress induces the secretion of brain exosomes accompanied by memory loss and mood deficits suggesting a potential role of sEVs in the brain response to stress and related stress-driven brain pathology. CONCLUSIONS: Overall, the spontaneous release method of sEV yield may contribute to the characterization and biomarker profile of physiologically relevant brain-derived sEVs in brain function and pathology. Video Abstract.


Asunto(s)
Enfermedad de Alzheimer , Exosomas , Vesículas Extracelulares , Humanos , Animales , Ratones , Encéfalo , Biomarcadores
3.
J Psychiatry Neurosci ; 48(4): E267-E284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37437920

RESUMEN

BACKGROUND: The nucleus accumbens (NAcc) is a crucial brain region for emotionally relevant behaviours. The NAcc is mainly composed of medium spiny neurons (MSNs) expressing either dopamine receptor D1 (D1-MSNs) or D2 (D2-MSNs). The D1-MSNs project to the ventral tegmental area (VTA) and the ventral pallidum (VP), whereas the D2-MSNs project only to the VP. The D1- and D2-MSNs have been associated with depression-like behaviours, but their contribution to anxiety remains to be determined. METHODS: We used optogenetic tools to selectively manipulate D1-MSN projections from the NAcc core to the VP or VTA and D2-MSN projections to the VP during validated anxiety-producing behavioural procedures in naive mice. In addition, we assessed the effects of optical stimulation on neuronal activity using in vivo electrophysiologic recordings in anesthetized animals. RESULTS: Optogenetic activation of D1-MSN projections to the VTA or VP did not trigger anxiety-like behaviour. However, optical activation of D2-MSN projections to the VP significantly increased anxiety-like behaviour. This phenotype was associated with a decrease in the neuronal activity of putative GABAergic neurons in the VP. Importantly, pretreating D2-MSN-VP animals with the γ-aminobutyric acid modulator diazepam prevented the optically triggered anxiety-like behaviour. LIMITATIONS: The exclusive use of males in the behavioural tests limits broader interpretation of the findings. Although we used optogenetic conditions that trigger quasi-physiologic changes, there are caveats associated with the artificial manipulation of neuronal activity. CONCLUSION: The D2-MSN-VP projections contributed to the development of anxiety-like behaviour, through modulation of GABAergic activity in the VP.


Asunto(s)
Prosencéfalo Basal , Núcleo Accumbens , Masculino , Animales , Ratones , Neuronas Espinosas Medianas , Ansiedad , Trastornos de Ansiedad
4.
EMBO J ; 37(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30166454

RESUMEN

Emerging studies implicate Tau as an essential mediator of neuronal atrophy and cognitive impairment in Alzheimer's disease (AD), yet the factors that precipitate Tau dysfunction in AD are poorly understood. Chronic environmental stress and elevated glucocorticoids (GC), the major stress hormones, are associated with increased risk of AD and have been shown to trigger intracellular Tau accumulation and downstream Tau-dependent neuronal dysfunction. However, the mechanisms through which stress and GC disrupt Tau clearance and degradation in neurons remain unclear. Here, we demonstrate that Tau undergoes degradation via endolysosomal sorting in a pathway requiring the small GTPase Rab35 and the endosomal sorting complex required for transport (ESCRT) machinery. Furthermore, we find that GC impair Tau degradation by decreasing Rab35 levels, and that AAV-mediated expression of Rab35 in the hippocampus rescues GC-induced Tau accumulation and related neurostructural deficits. These studies indicate that the Rab35/ESCRT pathway is essential for Tau clearance and part of the mechanism through which GC precipitate brain pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/metabolismo , Endosomas/metabolismo , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Lisosomas/metabolismo , Proteolisis , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Línea Celular Tumoral , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Dependovirus , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/genética , Endosomas/patología , Glucocorticoides/genética , Células HEK293 , Hipocampo/patología , Humanos , Lisosomas/genética , Lisosomas/patología , Neuronas/metabolismo , Neuronas/patología , Ratas , Estrés Fisiológico , Transducción Genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas tau/genética
5.
Mol Psychiatry ; 26(10): 5899-5911, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32467647

RESUMEN

Despite considerable progress in the understanding of its neuropathology, Alzheimer's disease (AD) remains a complex disorder with no effective treatment that counteracts the memory deficits and the underlying synaptic malfunction triggered by the accumulation of amyloid beta (Aß) and Tau protein. Mounting evidence supports a precipitating role for chronic environmental stress and glutamatergic excitotoxicity in AD, suggesting that targeting of glutamate receptor signaling may be a promising approach against both stress and AD pathologies. In light of the limited cognitive benefit of the direct antagonism of NMDA receptors in AD, we here focus on an alternative way to modify glutamatergic signaling through positive allosteric modulation of AMPA receptors, by the use of a PAM-AMPA compound. Using non-transgenic animal model of Aß oligomer injection as well as the combined stress and Aß i.c.v. infusion, we demonstrate that positive allosteric modulation of AMPA receptors by PAM-AMPA treatment reverted memory, but not mood, deficits. Furthermore, PAM-AMPA treatment reverted stress/Aß-driven synaptic missorting of Tau and associated Fyn/GluN2B-driven excitotoxic synaptic signaling accompanied by recovery of neurotransmitter levels in the hippocampus. Our findings suggest that positive allosteric modulation of AMPA receptors restores synaptic integrity and cognitive performance in stress- and Aß-evoked hippocampal pathology. As the prevalence of AD is increasing at an alarming rate, novel therapeutic targeting of glutamatergic signaling should be further explored against the early stages of AD synaptic malfunction with the goal of attenuating further synaptic damage before it becomes irreversible.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Hipocampo/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Receptores AMPA/metabolismo , Proteínas tau/metabolismo
6.
J Neurosci Res ; 99(11): 3084-3100, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34374447

RESUMEN

The laterodorsal tegmentum (LDT) is a brainstem nucleus classically involved in REM sleep and attention, and that has recently been associated with reward-related behaviors, as it controls the activity of ventral tegmental area (VTA) dopaminergic neurons, modulating dopamine release in the nucleus accumbens. To further understand the role of LDT-VTA inputs in reinforcement, we optogenetically manipulated these inputs during different behavioral paradigms in male rats. We found that in a two-choice instrumental task, optical activation of LDT-VTA projections shifts and amplifies preference to the laser-paired reward in comparison to an otherwise equal reward; the opposite was observed with inhibition experiments. In a progressive ratio task, LDT-VTA activation boosts motivation, that is, enhances the willingness to work to get the reward associated with LDT-VTA stimulation; and the reverse occurs when inhibiting these inputs. Animals abolished preference if the reward was omitted, suggesting that LDT-VTA stimulation adds/decreases value to the stimulation-paired reward. In addition, we show that LDT-VTA optical activation induces robust preference in the conditioned and real-time place preference tests, while optical inhibition induces aversion. The behavioral findings are supported by electrophysiological recordings and c-fos immunofluorescence correlates in downstream target regions. In LDT-VTA ChR2 animals, we observed an increase in the recruitment of lateral VTA dopamine neurons and D1 neurons from nucleus accumbens core and shell; whereas in LDT-VTA NpHR animals, D2 neurons appear to be preferentially recruited. Collectively, these data show that the LDT-VTA inputs encode positive reinforcement signals and are important for different dimensions of reward-related behaviors.


Asunto(s)
Tegmento Mesencefálico , Área Tegmental Ventral , Animales , Neuronas Dopaminérgicas/fisiología , Masculino , Núcleo Accumbens , Ratas , Recompensa , Área Tegmental Ventral/fisiología
7.
Mol Psychiatry ; 25(12): 3448, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31534159

RESUMEN

A correction to this paper has been published and can be accessed via a link at the top of the paper.

8.
Mol Psychiatry ; 25(12): 3241-3255, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31462765

RESUMEN

Deficits in decoding rewarding (and aversive) signals are present in several neuropsychiatric conditions such as depression and addiction, emphasising the importance of studying the underlying neural circuits in detail. One of the key regions of the reward circuit is the nucleus accumbens (NAc). The classical view on the field postulates that NAc dopamine receptor D1-expressing medium spiny neurons (D1-MSNs) convey reward signals, while dopamine receptor D2-expressing MSNs (D2-MSNs) encode aversion. Here, we show that both MSN subpopulations can drive reward and aversion, depending on their neuronal stimulation pattern. Brief D1- or D2-MSN optogenetic stimulation elicited positive reinforcement and enhanced cocaine conditioning. Conversely, prolonged activation induced aversion, and in the case of D2-MSNs, decreased cocaine conditioning. Brief stimulation was associated with increased ventral tegmenta area (VTA) dopaminergic tone either directly (for D1-MSNs) or indirectly via ventral pallidum (VP) (for D1- and D2-MSNs). Importantly, prolonged stimulation of either MSN subpopulation induced remarkably distinct electrophysiological effects in these target regions. We further show that blocking κ-opioid receptors in the VTA (but not in VP) abolishes the behavioral effects induced by D1-MSN prolonged stimulation. In turn, blocking δ-opioid receptors in the VP (but not in VTA) blocks the behavioral effects elicited by D2-MSN prolonged stimulation. Our findings demonstrate that D1- and D2-MSNs can bidirectionally control reward and aversion, explaining the existence of controversial studies in the field, and highlights that the proposed striatal functional opposition needs to be reconsidered.


Asunto(s)
Núcleo Accumbens , Receptores de Dopamina D1 , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Recompensa
9.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768962

RESUMEN

Parkinson's disease (PD) is a prevalent movement disorder characterized by the progressive loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). The 6-hydroxydopamine (6-OHDA) lesion is still one of the most widely used techniques for modeling Parkinson's disease (PD) in rodents. Despite commonly used in rats, it can be challenging to reproduce a similar lesion in mice. Moreover, there is a lack of characterization of the extent of behavioral deficits and of the neuronal loss/neurotransmitter system in unilateral lesion mouse models. In this study, we present an extensive behavioral and histological characterization of a unilateral intrastriatal 6-OHDA mouse model. Our results indicate significant alterations in balance and fine motor coordination, voluntary locomotion, and in the asymmetry's degree of forelimb use in 6-OHDA lesioned animals, accompanied by a decrease in self-care and motivational behavior, common features of depressive-like symptomatology. These results were accompanied by a decrease in tyrosine hydroxylase (TH)-labelling and dopamine levels within the nigrostriatal pathway. Additionally, we also identify a marked astrocytic reaction, as well as proliferative and reactive microglia in lesioned areas. These results confirm the use of unilateral intrastriatal 6-OHDA mice for the generation of a mild model of nigrostriatal degeneration and further evidences the recapitulation of key aspects of PD, thereby being suitable for future studies beholding new therapeutical interventions for this disease.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiopatología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/fisiopatología , Animales , Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Cuerpo Estriado/patología , Trastorno Depresivo/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Destreza Motora/efectos de los fármacos , Destreza Motora/fisiología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Neuroglía/efectos de los fármacos , Neuroglía/patología , Neuroglía/fisiología , Trastornos Parkinsonianos/patología , Fenotipo , Especificidad de la Especie , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Sustancia Negra/fisiopatología , Factores de Tiempo
10.
J Neuroinflammation ; 17(1): 282, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967684

RESUMEN

BACKGROUND: Alterations in the immune system are a complication of spinal cord injury (SCI) and have been linked to an excessive sympathetic outflow to lymphoid organs. Still unknown is whether these peripheral immune changes also contribute for the deleterious inflammatory response mounted at the injured spinal cord. METHODS: We analyzed different molecular outputs of the splenic sympathetic signaling for the first 24 h after a thoracic compression SCI. We also analyzed the effect of ablating the splenic sympathetic signaling to the innate immune and inflammatory response at the spleen and spinal cord 24 h after injury. RESULTS: We found that norepinephrine (NE) levels were already raised at this time-point. Low doses of NE stimulation of splenocytes in vitro mainly affected the neutrophils' population promoting an increase in both frequency and numbers. Interestingly, the interruption of the sympathetic communication to the spleen, by ablating the splenic nerve, resulted in reduced frequencies and numbers of neutrophils both at the spleen and spinal cord 1 day post-injury. CONCLUSION: Collectively, our data demonstrates that the splenic sympathetic signaling is involved in the infiltration of neutrophils after spinal cord injury. Our findings give new mechanistic insights into the dysfunctional regulation of the inflammatory response mounted at the injured spinal cord.


Asunto(s)
Fibras Adrenérgicas/fisiología , Infiltración Neutrófila/fisiología , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Bazo/inervación , Bazo/fisiología , Fibras Adrenérgicas/química , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Traumatismos de la Médula Espinal/inmunología , Vértebras Torácicas
11.
Glia ; 67(1): 182-192, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30461068

RESUMEN

Epidemiologic studies have provided compelling evidence that prenatal stress, through excessive maternal glucocorticoids exposure, is associated with psychiatric disorders later in life. We have recently reported that anxiety associated with prenatal exposure to dexamethasone (DEX, a synthetic glucocorticoid) correlates with a gender-specific remodeling of microglia in the medial prefrontal cortex (mPFC), a core brain region in anxiety-related disorders. Gender differences in microglia morphology, the higher prevalence of anxiety in women and the negative impact of anxiety in cognition, led us to specifically evaluate cognitive behavior and associated circuits (namely mPFC-dorsal hippocampus, dHIP), as well as microglia morphology in female rats prenatally exposed to dexamethasone (in utero DEX, iuDEX). We report that iuDEX impaired recognition memory and deteriorated neuronal synchronization between mPFC and dHIP. These functional deficits are paralleled by microglia hyper-ramification in the dHIP and decreased ramification in the mPFC, showing a heterogeneous remodeling of microglia morphology, both postnatally and at adulthood in different brain regions, that differently affect mood and cognition. The chronic blockade of adenosine A2A receptors (A2A R), which are core regulators of microglia morphology and physiology, ameliorated the cognitive deficits, but not the anxiety-like behavior. Notably, A2A R blockade rectified both microglia morphology in the dHIP and the lack of mPFC-dHIP synchronization, further heralding their role in cognitive function.


Asunto(s)
Ansiedad/metabolismo , Disfunción Cognitiva/metabolismo , Microglía/metabolismo , Receptor de Adenosina A2A/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Ansiedad/inducido químicamente , Ansiedad/psicología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/psicología , Dexametasona/toxicidad , Femenino , Glucocorticoides/toxicidad , Masculino , Microglía/efectos de los fármacos , Embarazo , Ratas , Ratas Wistar
12.
Phys Rev Lett ; 122(20): 208101, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31172737

RESUMEN

Since the first measurements of neuronal avalanches, the critical brain hypothesis has gained traction. However, if the brain is critical, what is the phase transition? For several decades, it has been known that the cerebral cortex operates in a diversity of regimes, ranging from highly synchronous states (with higher spiking variability) to desynchronized states (with lower spiking variability). Here, using both new and publicly available data, we test independent signatures of criticality and show that a phase transition occurs in an intermediate value of spiking variability, in both anesthetized and freely moving animals. The critical exponents point to a universality class different from mean-field directed percolation. Importantly, as the cortex hovers around this critical point, the avalanche exponents follow a linear relation that encompasses previous experimental results from different setups and is reproduced by a model.

13.
Mov Disord ; 33(5): 815-826, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29570846

RESUMEN

BACKGROUND AND OBJECTIVE: Mitochondrial dysfunction has been implicated in several neurodegenerative diseases. Creatine administration increases concentration of the energy buffer phosphocreatine, exerting protective effects in the brain. We evaluate whether a creatine-enriched diet would be beneficial for a mouse model of spinocerebellar ataxia type 3, a genetically defined neurodegenerative disease for which no treatment is available. METHODS: We performed 2 independent preclinical trials using the CMVMJD135 mouse model (treating 2 groups of animals with different disease severity) and wild-type mice, to which 2% creatine was provided for 19 (preclinical trial 1) or 29 (preclinical trial 2) weeks, starting at a presymptomatic age. Motor behavior was evaluated at several time points from 5 to 34 weeks of age, and neuropathological studies were performed at the end of each trial. RESULTS: Creatine supplementation led to an overall improvement in the motor phenotype of CMVMJD135 mice in both trials, rescuing motor balance and coordination and also restored brain weight, mitigated astrogliosis, and preserved Calbindin-positive cells in the cerebellum. Moreover, a reduction of mutant ataxin-3 aggregates occurred despite maintained steady-state levels of the protein and the absence of autophagy activation. Creatine treatment also restored the expression of the mitochondrial mass marker Porin and reduced the expression of antioxidant enzymes Heme oxygenase 1 (HO1) and NAD(P)H Quinone Dehydrogenase 1 (NQO1), suggesting a beneficial effect at the level of mitochondria and oxidative stress. CONCLUSIONS: Creatine slows disease progression and improves motor dysfunction as well as ameliorates neuropathology of the CMVMJD135 animals, supporting this as a useful strategy to slow the progression of spinocerebellar ataxia type 3. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Creatina/administración & dosificación , Dieta/métodos , Enfermedad de Machado-Joseph/dietoterapia , Enfermedad de Machado-Joseph/genética , Fármacos Neuroprotectores/administración & dosificación , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Calbindinas/genética , Calbindinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Estudios de Seguimiento , Trastornos Neurológicos de la Marcha/dietoterapia , Trastornos Neurológicos de la Marcha/etiología , Gliosis/dietoterapia , Gliosis/genética , Enfermedad de Machado-Joseph/complicaciones , Enfermedad de Machado-Joseph/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/genética , ARN Mensajero/metabolismo
14.
Cerebellum ; 13(6): 713-27, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25112410

RESUMEN

The accumulation of misfolded proteins in neurons, leading to the formation of cytoplasmic and nuclear aggregates, is a common theme in age-related neurodegenerative diseases, possibly due to disturbances of the proteostasis and insufficient activity of cellular protein clearance pathways. Lithium is a well-known autophagy inducer that exerts neuroprotective effects in different conditions and has been proposed as a promising therapeutic agent for several neurodegenerative diseases. We tested the efficacy of chronic lithium (10.4 mg/kg) treatment in a transgenic mouse model of Machado-Joseph disease, an inherited neurodegenerative disease, caused by an expansion of a polyglutamine tract within the protein ataxin-3. A battery of behavioral tests was used to assess disease progression. In spite of activating autophagy, as suggested by the increased levels of Beclin-1, Atg7, and LC3-II, and a reduction in the p62 protein levels, lithium administration showed no overall beneficial effects in this model concerning motor performance, showing a positive impact only in the reduction of tremors at 24 weeks of age. Our results do not support lithium chronic treatment as a promising strategy for the treatment of Machado-Joseph disease (MJD).


Asunto(s)
Cloruro de Litio/farmacología , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/fisiopatología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Fármacos Neuromusculares/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Ataxina-3 , Autofagia/efectos de los fármacos , Autofagia/fisiología , Proteína 7 Relacionada con la Autofagia , Beclina-1 , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Humanos , Masculino , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Equilibrio Postural/efectos de los fármacos , Equilibrio Postural/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Resultado del Tratamiento , Temblor/tratamiento farmacológico , Temblor/fisiopatología , Pérdida de Peso/efectos de los fármacos , Pérdida de Peso/fisiología
15.
Neurobiol Stress ; 30: 100635, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38645599

RESUMEN

Rodents are sensitive to the emotional state of conspecifics. While the presence of affiliative social partners mitigates the physiological response to stressors (buffering), the partners of stressed individuals show behavioral and endocrine changes indicating that stress parameters can be transmitted across the group members (contagion). In this study, we investigated the social contagion/buffering phenomena in behavior and neuroendocrine mechanisms after exposure to chronic stress, in groups of rats living in the PhenoWorld (PhW). Three groups were tested (8 stressed rats, 8 unstressed rats, and a mixed group with 4 and 4) and these were analyzed under 4 conditions: stressed (pure stress group, n = 8), unstressed (naive control group, n = 8), stressed from mixed group (stressed companion group, n = 8), unstressed from mixed group (unstressed companion group, n = 8. While naive control animals remained undisturbed, pure stress group animals were all exposed to stress. Half of the animals under the mixed-treatment condition were exposed to stress (stressed companion group) and cohabitated with their unstressed partners (unstressed companion group). We confirmed the well-established chronic unpredictable stress (CUS) effects in physiological, behavioral, and neuroendocrine endpoints; body weight gain, open arm entries and time in EPM, and oxytocin receptor expression levels in the amygdala decreased by stress exposure, whereas adrenal weight was increased by stress. Furthermore, we found that playing, rearing and solitary resting behaviors decreased, whereas huddling behavior increased by CUS. In addition, we detected significant increases (stress-buffering) in body weight gain and huddling behaviors between pure stress and stress companion animals, and significant stress contagion effects in emotional behavior and oxytocin receptor expression levels between naive control and control companion groups. Hence, we demonstrate buffering and contagion effects were evident in physiological parameters, emotional behaviors, and social home-cage behaviors of rats and we suggest a possible mediation of these effects by oxytocin neurotransmission. In conclusion, the results herein suggest that the stress status of animals living in the same housing environment influences the behavior of the group.

16.
Phys Rev E ; 110(1-1): 014402, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39160943

RESUMEN

The local field potential (LFP) is as a measure of the combined activity of neurons within a region of brain tissue. While biophysical modeling schemes for LFP in cortical circuits are well established, there is a paramount lack of understanding regarding the LFP properties along the states assumed in cortical circuits over long periods. Here we use a symbolic information approach to determine the statistical complexity based on Jensen disequilibrium measure and Shannon entropy of LFP data recorded from the primary visual cortex (V1) of urethane-anesthetized rats and freely moving mice. Using these information quantifiers, we find consistent relations between LFP recordings and measures of cortical states at the neuronal level. More specifically, we show that LFP's statistical complexity is sensitive to cortical state (characterized by spiking variability), as well as to cortical layer. In addition, we apply these quantifiers to characterize behavioral states of freely moving mice, where we find indirect relations between such states and spiking variability.


Asunto(s)
Modelos Neurológicos , Corteza Visual Primaria , Animales , Ratones , Ratas , Corteza Visual Primaria/fisiología , Corteza Visual Primaria/citología , Potenciales de Acción , Neuronas/fisiología , Corteza Visual/fisiología , Corteza Visual/citología
17.
J Clin Invest ; 134(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227368

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ácido Tauroquenodesoxicólico , Ratones , Adulto , Animales , Humanos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Receptores de Glucocorticoides/genética , Ratones Transgénicos
18.
Front Neural Circuits ; 17: 1086053, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817646

RESUMEN

The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders. VP neurons respond temporally faster and show more advanced reward coding and prediction error processing than neurons in the upstream nucleus accumbens, and regulate the activity of the ventral mesencephalon dopamine system. This review will summarize recent findings in the literature and provide an update on the complex cellular heterogeneity and cell- and circuit-specific regulation of motivated behaviors and reinforcement by the VP with a specific focus on mood and substance use disorders. In addition, we will discuss mechanisms by which stress and drug exposure alter the functioning of the VP and produce susceptibility to neuropsychiatric disorders. Lastly, we will outline unanswered questions and identify future directions for studies necessary to further clarify the central role of VP neurons in the regulation of motivated behaviors. Significance: Research in the last decade has revealed a complex cell- and circuit-specific role for the VP in reward processing and the regulation of motivated behaviors. Novel insights obtained using cell- and circuit-specific interrogation strategies have led to a major shift in our understanding of this region. Here, we provide a comprehensive review of the VP in which we integrate novel findings with the existing literature and highlight the emerging role of the VP as a linchpin of the neural systems that regulate motivation, reward, and aversion. In addition, we discuss the dysfunction of the VP in animal models of neuropsychiatric disorders.


Asunto(s)
Prosencéfalo Basal , Animales , Motivación , Recompensa , Neuronas/fisiología , Núcleo Accumbens/fisiología
19.
FEBS Lett ; 597(21): 2601-2610, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37643893

RESUMEN

The nucleus accumbens (NAc) has been considered a key brain region for encoding reward/aversion and cue-outcome associations. These processes are encoded by medium spiny neurons that express either dopamine receptor D1 (D1-MSNs) or D2 (D2-MSNs). Despite the well-established role of NAc neurons in encoding reward/aversion, the underlying processing by D1-/D2-MSNs remains largely unknown. Recent electrophysiological, optogenetic and calcium imaging studies provided insight on the complex role of D1- and D2-MSNs in these behaviours and helped to clarify their involvement in associative learning. Here, we critically discuss findings supporting an intricate and complementary role of NAc D1- and D2-MSNs in associative learning, emphasizing the need for additional studies in order to fully understand the role of these neurons in behaviour.


Asunto(s)
Núcleo Accumbens , Receptores de Dopamina D2 , Animales , Ratones , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/genética , Neuronas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos
20.
Front Behav Neurosci ; 17: 1195011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37358966

RESUMEN

Being social animals, rats exhibit a range of social behaviors that help them build social bonds and maintain group cohesion. Behavior is influenced by multiple factors, including stress exposure, and the expression of the impact of stress on both social and non-social behaviors may also be affected by the living conditions of rats. In this study, we explored the physiological and behavioral effects of chronic unpredictable stress on group-housed rats in the PhenoWorld (PhW), a socially and physically enriched environment closer to real-life conditions. Two independent experiments were performed: one in the control condition (PhW control, n = 8) and one in the stress condition (PhW stress, n = 8). Control animals remained undisturbed except for cage cleaning and daily handling procedures. Stress group animals were all exposed to chronic unpredictable stress. Data confirm that stress exposure triggers anxiety-like behavior in the PhW. In terms of home-cage behaviors, we found that stress affects social behaviors (by decreased playing and increased huddling behaviors) and non-social behaviors (as shown by the decrease in rearing and walking behaviors). These results are of relevance to expand our knowledge on the influence of stress on social and non-social behaviors, which are of importance to understand better species-typical behaviors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA