Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 170-177, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814220

RESUMEN

Antibiotics are an indispensable component of therapeutic strategies in the treatment of severe bacterial infections. Unfortunately, in addition to the emerging resistance of bacteria to antibiotics, side effects are an important problem with their use. Knowledge of the mechanisms underlying the development of side effects can make it possible to understand how it is possible to reduce their negative impact on the health of patients. One of the negative effects of antibiotics on the human organism is interference with homeostasis and the functioning of mitochondria.  Side effects of antibiotics based on this influence require further study. Here we consider the mitochondria as a side target of antibiotics and the main strategies of antibiotics that cause mitochondrial dysfunction. Options are also considered on how to deal with this problem and even use it for good.


Asunto(s)
Antibacterianos , Mitocondrias , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Animales , Homeostasis/efectos de los fármacos
2.
J Biomed Sci ; 29(1): 25, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35414069

RESUMEN

BACKGROUND: Abdominal aortic aneurysm (AAA) is a relatively common and often fatal condition. A major histopathological hallmark of AAA is the severe degeneration of aortic media with loss of vascular smooth muscle cells (VSMCs), which are the main source of extracellular matrix (ECM) proteins. VSMCs and ECM homeostasis are essential in maintaining structural integrity of the aorta. Cysteine-rich protein 2 (CRP2) is a VSMC-expressed protein; however, the role of CRP2 in AAA formation is unclear. METHODS: To investigate the function of CRP2 in AAA formation, mice deficient in Apoe (Apoe-/-) or both CRP2 (gene name Csrp2) and Apoe (Csrp2-/-Apoe-/-) were subjected to an angiotensin II (Ang II) infusion model of AAA formation. Aortas were harvested at different time points and histological analysis was performed. Primary VSMCs were generated from Apoe-/- and Csrp2-/-Apoe-/- mouse aortas for in vitro mechanistic studies. RESULTS: Loss of CRP2 attenuated Ang II-induced AAA incidence and severity, accompanied by preserved smooth muscle α-actin expression and reduced elastin degradation, matrix metalloproteinase 2 (MMP2) activity, deposition of collagen, particularly collagen III (Col III), aortic tensile strength, and blood pressure. CRP2 deficiency decreased the baseline MMP2 and Col III expression in VSMCs and mitigated Ang II-induced increases of MMP2 and Col III via blunting Erk1/2 signaling. Rescue experiments were performed by reintroducing CRP2 into Csrp2-/-Apoe-/- VSMCs restored Ang II-induced Erk1/2 activation, MMP2 expression and activity, and Col III levels. CONCLUSIONS: Our results indicate that in response to Ang II stimulation, CRP2 deficiency maintains aortic VSMC density, ECM homeostasis, and structural integrity through Erk1/2-Col III and MMP2 axis and reduces AAA formation. Thus, targeting CRP2 provides a potential therapeutic strategy for AAA.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Abdominal , Angiotensina II/efectos adversos , Angiotensina II/metabolismo , Animales , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Apolipoproteínas E/metabolismo , Colágeno/efectos adversos , Colágeno/metabolismo , Cisteína , Modelos Animales de Enfermedad , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo
3.
Molecules ; 27(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897875

RESUMEN

Cardiovascular diseases associated with atherosclerosis are the major cause of death in developed countries. Early prevention and treatment of atherosclerosis are considered to be an important aspect of the therapy of cardiovascular disease. Preparations based on natural products affect the main pathogenetic steps of atherogenesis, and so represent a perspective for the long-term prevention of atherosclerosis development. Numerous experimental and clinical studies have demonstrated the multiple beneficial effects of licorice and its bioactive compounds-anti-inflammatory, anti-cytokine, antioxidant, anti-atherogenic, and anti-platelet action-which allow us to consider licorice as a promising atheroprotective agent. In this review, we summarized the current knowledge on the licorice anti-atherosclerotic mechanisms of action based on the results of experimental studies, including the results of the in vitro study demonstrating licorice effect on the ability of blood serum to reduce intracellular cholesterol accumulation in cultured macrophages, and presented the results of clinical studies confirming the ameliorating activity of licorice in regard to traditional cardiovascular risk factors as well as the direct anti-atherosclerotic effect of licorice.


Asunto(s)
Aterosclerosis , Glycyrrhiza , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
4.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920897

RESUMEN

In this Special Issue of the International Journal of Molecular Sciences, we include insightful reviews and research papers on the subject "Immunopathology of Atherosclerosis and Related Diseases: Focus on Molecular Biology".[...].


Asunto(s)
Aterosclerosis/inmunología , Aterosclerosis/patología , Biología Molecular , Alarminas/metabolismo , Evolución Biológica , ADN Mitocondrial/metabolismo , Humanos , Inmunidad Innata , Inflamación/patología , Microbiota , Modelos Biológicos
5.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445687

RESUMEN

Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state of the organism's nervous system (or the body in general). We hypothesized that chronic stress may be one of the causes occurence of several molecular and cellular types of stress. We analyzed literary sources and considered most of these types of stress in our review article. We examined genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead to various types of stress. The end result of chronic stress can be metabolic disturbance in humans and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear genome and dysfunction of cells and their compartments can occur. As a result of these processes, oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular, chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and cellular types of stress.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Estrés Oxidativo/fisiología , Animales , Homeostasis/fisiología , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo
6.
Curr Atheroscler Rep ; 22(10): 54, 2020 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-32772280

RESUMEN

PURPOSE OF REVIEW: Mutations in both nuclear and mitochondrial genes are associated with the development of atherosclerotic lesions in arteries and may provide a partial explanation to the focal nature of lesion distribution in the arterial wall. This review is aimed to discuss the genetic aspects of atherogenesis with a special focus on possible pro-atherogenic variants (mutations) of the nuclear and mitochondrial genomes that may be implicated in atherosclerosis development and progression. RECENT FINDINGS: Mutations in the nuclear genes generally do not cause a phenotype restricted to a specific vascular wall cell and manifest themselves mostly at the organism level. Such mutations can act as important contributors to changes in lipid metabolism and modulate other risk factors of atherosclerosis. By contrast, mitochondrial DNA (mtDNA) mutations occurring locally in the arterial wall cells or in circulating immune cells may play a site-specific role in atherogenesis. The mosaic distribution of heteroplasmic mtDNA mutations in the arterial wall tissue may explain, at least to some extent, the locality and focality of atherosclerotic lesions distribution. The genetic mechanisms of atherogenesis include alterations of both nuclear and mitochondrial genomes. Altered lipid metabolism and inflammatory response of resident arterial wall and circulating immune cells may be related to mtDNA damage and defective mitophagy, which hinders clearance of dysfunctional mitochondria. Mutations of mtDNA can have mosaic distribution and locally affect functionality of endothelial and subendothelial intimal cells in the arterial wall contributing to atherosclerotic lesion development.


Asunto(s)
Aterosclerosis/genética , Mitocondrias/genética , Mutación , Animales , Arterias/metabolismo , Arterias/patología , Aterosclerosis/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Genoma Mitocondrial , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple
7.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751832

RESUMEN

Immunoglobulins are the potent effector proteins of the humoral immune response. In the course of evolution, immunoglobulins have formed extremely diverse types of molecular structures with antigen-recognizing, antigen-binding, and effector functions embedded in a single molecule. Polysaccharide moiety of immunoglobulins plays the essential role in immunoglobulin functioning. There is growing evidence that the carbohydrate composition of immunoglobulin-linked glycans, and especially their terminal sialic acid residues, provide a key effect on the effector functions of immunoglobulins. Possibly, sialylation of Fc glycan is a common mechanism of IgG anti-inflammatory action in vivo. Thus, the post-translational modification (glycosylation) of immunoglobulins opens up significant possibilities in the diagnosis of both immunological and inflammatory disorders and in their therapies. This review is focused on the analysis of glycosylation of immunoglobulins, which can be a promising addition to improve existing strategies for the diagnosis and treatment of various immuno-inflammatory diseases.


Asunto(s)
Enfermedades del Sistema Inmune/tratamiento farmacológico , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G , Inflamación/tratamiento farmacológico , Ácido N-Acetilneuramínico/química , Polisacáridos/química , Animales , Glicosilación , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/uso terapéutico , Ratones , Procesamiento Proteico-Postraduccional
8.
Int J Mol Sci ; 21(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414036

RESUMEN

Zinc oxide nanoparticles (ZnONPs) are frequently encountered nanomaterials in our daily lives. Despite the benefits of ZnONPs in a variety of applications, many studies have shown potential health hazards of exposure to ZnONPs. We have shown that oropharyngeal aspiration of ZnONPs in mice increases lung inflammation. However, the detailed mechanisms underlying pulmonary inflammatory cell infiltration remain to be elucidated. Endothelium functions as a barrier between the blood stream and the blood vessel wall. Endothelial barrier dysfunction may increase infiltration of immune cells into the vessel wall and underlying tissues. This current study examined the effects of ZnONPs exposure on endothelial barriers. ZnONPs exposure increased leukocyte infiltration in the mouse lungs. In endothelial cells, ZnONPs reduced the continuity of tight junction proteins claudin-5 and zonula occludens-1 (ZO-1) at the cell junctions. ZnONPs induced adherens junction protein VE-cadherin internalization from membrane to cytosol and dissociation with ß-catenin, leading to reduced and diffused staining of VE-cadherin and ß-catenin at cell junctions. Our results demonstrated that ZnONPs disrupted both tight and adherens junctions, compromising the integrity and stability of the junction network, leading to inflammatory cell infiltration. Thus, ZnONPs exposure in many different settings should be carefully evaluated for vascular effects and subsequent health impacts.


Asunto(s)
Claudina-5/genética , Endotelio/efectos de los fármacos , Neumonía/genética , Óxido de Zinc/efectos adversos , Proteína de la Zonula Occludens-1/genética , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/genética , Animales , Vasos Sanguíneos/efectos de los fármacos , Humanos , Leucocitos/efectos de los fármacos , Ratones , Nanopartículas/efectos adversos , Orofaringe/efectos de los fármacos , Neumonía/inducido químicamente , Neumonía/patología
9.
Int J Mol Sci ; 21(8)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295185

RESUMEN

Accumulation of lipid-laden (foam) cells in the arterial wall is known to be the earliest step in the pathogenesis of atherosclerosis. There is almost no doubt that atherogenic modified low-density lipoproteins (LDL) are the main sources of accumulating lipids in foam cells. Atherogenic modified LDL are taken up by arterial cells, such as macrophages, pericytes, and smooth muscle cells in an unregulated manner bypassing the LDL receptor. The present study was conducted to reveal possible common mechanisms in the interaction of macrophages with associates of modified LDL and non-lipid latex particles of a similar size. To determine regulatory pathways that are potentially responsible for cholesterol accumulation in human macrophages after the exposure to naturally occurring atherogenic or artificially modified LDL, we used transcriptome analysis. Previous studies of our group demonstrated that any type of LDL modification facilitates the self-association of lipoprotein particles. The size of such self-associates hinders their interaction with a specific LDL receptor. As a result, self-associates are taken up by nonspecific phagocytosis bypassing the LDL receptor. That is why we used latex beads as a stimulator of macrophage phagocytotic activity. We revealed at least 12 signaling pathways that were regulated by the interaction of macrophages with the multiple-modified atherogenic naturally occurring LDL and with latex beads in a similar manner. Therefore, modified LDL was shown to stimulate phagocytosis through the upregulation of certain genes. We have identified at least three genes (F2RL1, EIF2AK3, and IL15) encoding inflammatory molecules and associated with signaling pathways that were upregulated in response to the interaction of modified LDL with macrophages. Knockdown of two of these genes, EIF2AK3 and IL15, completely suppressed cholesterol accumulation in macrophages. Correspondingly, the upregulation of EIF2AK3 and IL15 promoted cholesterol accumulation. These data confirmed our hypothesis of the following chain of events in atherosclerosis: LDL particles undergo atherogenic modification; this is accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. This chain of events may explain the relationship between cholesterol accumulation and inflammation. The primary sequence of events in this chain is related to inflammatory response rather than cholesterol accumulation.


Asunto(s)
Colesterol/metabolismo , Células Espumosas/metabolismo , Metabolismo de los Lípidos , Transducción de Señal , Biomarcadores , Susceptibilidad a Enfermedades , Células Espumosas/patología , Perfilación de la Expresión Génica , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Modelos Biológicos
10.
Int J Mol Sci ; 21(3)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012706

RESUMEN

Excessive accumulation of lipid inclusions in the arterial wall cells (foam cell formation) caused by modified low-density lipoprotein (LDL) is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. Recently, we have identified the top 10 master regulators that were involved in the accumulation of cholesterol in cultured macrophages induced by the incubation with modified LDL. It was found that most of the identified master regulators were related to the regulation of the inflammatory immune response, but not to lipid metabolism. A possible explanation for this unexpected result is a stimulation of the phagocytic activity of macrophages by modified LDL particle associates that have a relatively large size. In the current study, we investigated gene regulation in macrophages using transcriptome analysis to test the hypothesis that the primary event occurring upon the interaction of modified LDL and macrophages is the stimulation of phagocytosis, which subsequently triggers the pro-inflammatory immune response. We identified genes that were up- or downregulated following the exposure of cultured cells to modified LDL or latex beads (inert phagocytosis stimulators). Most of the identified master regulators were involved in the innate immune response, and some of them were encoding major pro-inflammatory proteins. The obtained results indicated that pro-inflammatory response to phagocytosis stimulation precedes the accumulation of intracellular lipids and possibly contributes to the formation of foam cells. In this way, the currently recognized hypothesis that the accumulation of lipids triggers the pro-inflammatory response was not confirmed. Comparative analysis of master regulators revealed similarities in the genetic regulation of the interaction of macrophages with naturally occurring LDL and desialylated LDL. Oxidized and desialylated LDL affected a different spectrum of genes than naturally occurring LDL. These observations suggest that desialylation is the most important modification of LDL occurring in vivo. Thus, modified LDL caused the gene regulation characteristic of the stimulation of phagocytosis. Additionally, the knock-down effect of five master regulators, such as IL15, EIF2AK3, F2RL1, TSPYL2, and ANXA1, on intracellular lipid accumulation was tested. We knocked down these genes in primary macrophages derived from human monocytes. The addition of atherogenic naturally occurring LDL caused a significant accumulation of cholesterol in the control cells. The knock-down of the EIF2AK3 and IL15 genes completely prevented cholesterol accumulation in cultured macrophages. The knock-down of the ANXA1 gene caused a further decrease in cholesterol content in cultured macrophages. At the same time, knock-down of F2RL1 and TSPYL2 did not cause an effect. The results obtained allowed us to explain in which way the inflammatory response and the accumulation of cholesterol are related confirming our hypothesis of atherogenesis development based on the following viewpoints: LDL particles undergo atherogenic modifications that, in turn, accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. Therefore, it became obvious that the primary event in this sequence is not the accumulation of cholesterol but an inflammatory response.


Asunto(s)
Células Espumosas/metabolismo , Células Espumosas/patología , Lipoproteínas LDL/metabolismo , Fagocitosis , Biomarcadores , Células Espumosas/inmunología , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Inmunidad Innata , Metabolismo de los Lípidos , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Oxidación-Reducción , Fagocitosis/genética , Fagocitosis/inmunología , Transducción de Señal , Transcriptoma
11.
Int J Mol Sci ; 20(14)2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31330845

RESUMEN

Lipid accumulation in the arterial wall is a crucial event in the development of atherosclerotic lesions. Circulating low-density lipoprotein (LDL) is the major source of lipids that accumulate in the atherosclerotic plaques. It was discovered that not all LDL is atherogenic. In the blood plasma of atherosclerotic patients, LDL particles are the subject of multiple enzymatic and non-enzymatic modifications that determine their atherogenicity. Desialylation is the primary and the most important atherogenic LDL modification followed by a cascade of other modifications that also increase blood atherogenicity. The enzyme trans-sialidase is responsible for the desialylation of LDL, therefore, its activity plays an important role in atherosclerosis development. Moreover, circulating modified LDL is associated with immune complexes that also have a strong atherogenic potential. Moreover, it was shown that antibodies to modified LDL are also atherogenic. The properties of modified LDL were described, and the strong evidence indicating that it is capable of inducing intracellular accumulation of lipids was presented. The accumulated evidence indicated that the molecular properties of modified LDL, including LDL-containing immune complexes can serve as the prognostic/diagnostic biomarkers and molecular targets for the development of anti-atherosclerotic drugs.


Asunto(s)
Aterosclerosis/metabolismo , Metabolismo de los Lípidos/fisiología , Animales , Complejo Antígeno-Anticuerpo/sangre , Complejo Antígeno-Anticuerpo/metabolismo , Aterosclerosis/sangre , Aterosclerosis/etiología , Humanos , Lipoproteínas LDL/sangre , Lipoproteínas LDL/metabolismo
12.
Exp Mol Pathol ; 105(2): 202-207, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30118702

RESUMEN

High density lipoproteins (HDL) are key components of reverse cholesterol transport pathway. HDL removes excessive cholesterol from peripheral cells, including macrophages, providing protection from cholesterol accumulation and conversion into foam cells, which is a key event in pathogenesis of atherosclerosis. The mechanism of cellular cholesterol efflux stimulation by HDL involves interaction with the ABCA1 lipid transporter and ensuing transfer of cholesterol to HDL particles. In this study, we looked for additional proteins contributing to HDL-dependent cholesterol efflux. Using RNAseq, we analyzed mRNAs induced by HDL in human monocyte-derived macrophages and identified three genes, fatty acid desaturase 1 (FADS1), insulin induced gene 1 (INSIG1), and the low-density lipoprotein receptor (LDLR), expression of which was significantly upregulated by HDL. We individually knocked down these genes in THP-1 cells using gene silencing by siRNA, and measured cellular cholesterol efflux to HDL. Knock down of FADS1 did not significantly change cholesterol efflux (p = 0.70), but knockdown of INSIG1 and LDLR resulted in highly significant reduction of the efflux to HDL (67% and 75% of control, respectively, p < 0.001). Importantly, the suppression of cholesterol efflux was independent of known effects of these genes on cellular cholesterol content, as cells were loaded with cholesterol using acetylated LDL. These results indicate that HDL particles stimulate expression of genes that enhance cellular cholesterol transfer to HDL.


Asunto(s)
HDL-Colesterol/genética , Macrófagos/fisiología , Transportador 1 de Casete de Unión a ATP/genética , Aterosclerosis/fisiopatología , Transporte Biológico , Colesterol , HDL-Colesterol/metabolismo , delta-5 Desaturasa de Ácido Graso , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Células Espumosas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Silenciador del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , ARN Mensajero , ARN Interferente Pequeño , Receptores de LDL/genética , Receptores de LDL/metabolismo , Células THP-1 , Regulación hacia Arriba
13.
Int J Mol Sci ; 17(8)2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27529226

RESUMEN

The risk of cardiovascular disease and atherosclerosis progression is significantly increased after menopause, probably due to the decrease of estrogen levels. The use of hormone replacement therapy (HRT) for prevention of cardiovascular disease in older postmenopausal failed to meet expectations. Phytoestrogens may induce some improvements in climacteric symptoms, but their effect on the progression of atherosclerosis remains unclear. The reduction of cholesterol accumulation at the cellular level should lead to inhibition of the atherosclerotic process in the arterial wall. The inhibition of intracellular lipid deposition with isoflavonoids was suggested as the effective way for the prevention of plaque formation in the arterial wall. The aim of this double-blind, placebo-controlled clinical study was to investigate the effect of an isoflavonoid-rich herbal preparation on atherosclerosis progression in postmenopausal women free of overt cardiovascular disease. One hundred fifty-seven healthy postmenopausal women (age 65 ± 6) were randomized to a 500 mg isoflavonoid-rich herbal preparation containing tannins from grape seeds, green tea leaves, hop cone powder, and garlic powder, or placebo. Conventional cardiovascular risk factors and intima-media thickness of common carotid arteries (cIMT) were evaluated at the baseline and after 12 months of treatment. After 12-months follow-up, total cholesterol decreased by 6.3% in isoflavonoid-rich herbal preparation recipients (p = 0.011) and by 5.2% in placebo recipients (p = 0.020); low density lipoprotein (LDL) cholesterol decreased by 7.6% in isoflavonoid-rich herbal preparation recipients (p = 0.040) and by 5.2% in placebo recipients (non-significant, NS); high density lipoprotein (HDL) cholesterol decreased by 3.4% in isoflavonoid-rich herbal preparation recipients (NS) and by 4.5% in placebo recipients (p = 0.038); triglycerides decreased by 6.0% in isoflavonoid-rich herbal preparation recipients (NS) and by 7.1% in placebo recipients (NS). The differences between lipid changes in the isoflavonoid-rich herbal preparation and placebo recipients did not reach statistical significance (p > 0.05). Nevertheless, the mean cIMT progression was significantly lower in isoflavonoid-rich herbal preparation recipients as compared to the placebo group (6 µm, or <1%, versus 100 µm, or 13%; p < 0.001 for the difference). The growth of existing atherosclerotic plaques in isoflavonoid-rich herbal preparation recipients was inhibited by 1.5-fold (27% versus 41% in the placebo group). The obtained results demonstrate that the use of isoflavonoid-rich herbal preparation in postmenopausal women may suppress the formation of new atherosclerotic lesions and reduce the progression of existing ones, thus promising new drug for anti-atherosclerotic therapy. Nevertheless, further studies are required to confirm these findings.


Asunto(s)
Fitoestrógenos/uso terapéutico , Preparaciones de Plantas/uso terapéutico , Posmenopausia/efectos de los fármacos , Anciano , Aterosclerosis/sangre , Aterosclerosis/prevención & control , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/prevención & control , Método Doble Ciego , Femenino , Humanos , Isoflavonas/uso terapéutico , Persona de Mediana Edad , Triglicéridos/sangre
14.
Exp Mol Pathol ; 99(1): 1-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25962658

RESUMEN

The existing data on apoptotic processes in human atherosclerotic lesions is insufficient and is often contradictory. This study was undertaken to evaluate the levels of the expression of key apoptosis-related genes, namely, caspase 3 (CASP3) and caspase 9 (CASP9) in the normal (non-atherosclerotic) intima of the human aorta in comparison with those in different types of atherosclerotic lesions. Twenty-five autopsy samples of thoracic aorta were examined by polymerase chain reaction (PCR) analysis. The study revealed that the expressions of CASP3 and CASP9 genes were changed in different types of atherosclerotic lesions in course of the progression of the disease, but not in a unanimous way. The mRNA expression of CASP3 was found to be steadily decreasing with the progression of atherosclerosis while the expression of CASP9 showed a pattern which can be described as a "bell-shaped" relationship between gene mRNA expression and the type of atherosclerotic lesion, with the maximum being observed in fatty streaks. The fall in CASP3 expression may be associated with cellular senescence as well as with the domination of necrotic processes in atherosclerotic lesions, as shown by electron microscopic analysis. Our study provides novel quantitative data on the expression of CASP3 and CASP9 genes in different atherosclerotic lesions in the human aorta and thus, might assist in better understanding of the processes occurring during the development of lesions in human atherogenesis.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Anciano , Aorta/patología , Apoptosis , Aterosclerosis/patología , Caspasa 3/genética , Caspasa 9/genética , Progresión de la Enfermedad , Estudios de Evaluación como Asunto , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patología
15.
Exp Mol Pathol ; 99(1): 25-32, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25910413

RESUMEN

The importance of the study of an association of mitochondrial DNA mutations with asymptomatic atherosclerosis in women is undeniable. In the present study, a series of PCR with primers for mutation region and further amplificate pyrosequencing were carried out to identify point substitutions or microdeletions of the mitochondrial genome. The results obtained were processed using the original method of estimating the level of heteroplasmy. Five mutations in the mitochondrial genome, namely C3256T, G14709A, G12315A, G13513A and G14846A, in which the heteroplasmy level was associated with the degree of preclinical atherosclerosis in women, were identified. The data obtained in the study showed that C3256T, G14709A and G12315A mutations have a positive correlation with atherosclerosis while G13513A and G14846A mutations have a negative correlation with atherosclerotic lesions. Total mutational load of the mitochondrial genome for C3256T, G14709A, G12315A, G13513A and G14846A mutations explains 68% of the variability of thickness of the carotid intima-medial layer, while the complex of traditional risk factors for cardiovascular diseases explains only 8% of the IMT variability. Data on the correlation between heteroplasmy levels of C3256T, G14709A, G12315A, G13513A and G14846A mutations prompt a suggestion that these mutations may be present on the same haplotypes of mitochondrial genome, associated with atherosclerosis.


Asunto(s)
Enfermedades de las Arterias Carótidas/genética , Genoma Mitocondrial/genética , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , Peso Corporal , Enfermedades de las Arterias Carótidas/diagnóstico , ADN Mitocondrial/genética , Femenino , Humanos , Modelos Lineales , Persona de Mediana Edad , Factores de Riesgo , Túnica Íntima/patología
16.
Exp Mol Pathol ; 99(3): 717-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26586456

RESUMEN

Mitochondrial genome mutations are associated with different pathologies. Earlier the authors of the study found an association of some mitochondrial genome mutations with atherosclerosis. In the present study, an attempt to analyze a connection of detected mutations with the age of patients with atherosclerosis was made. The investigated sample included 700 individuals, examined by ultrasonography in polyclinics of Moscow and the Moscow region. The sample was divided approximately into two equal parts. The first part included patients with carotid atherosclerosis. The second part included conventionally healthy study participants. In PCR-fragments of individuals' DNA the heteroplasmy level of investigated mutations was quantitatively measured by the method, developed by members of our laboratory on the basis of pyrosequencing technology. According to the obtained results mutations G12315A, G14459A and G15059A were significantly associated with the age of the study participants. The same time one nucleotide replacements A1555G and G14846A correlated negatively with the age at a high level of significance. Thus, in the present study an association of atherogenic mitochondrial genome mutations with age was found. Antiatherogenic mutations were correlated with the age negatively. This prompts a suggestion about common mechanisms of atherogenesis and aging.


Asunto(s)
Envejecimiento/genética , Enfermedades de las Arterias Carótidas/genética , ADN Mitocondrial/genética , Factores de Edad , Humanos , Mutación , Reacción en Cadena de la Polimerasa
17.
Gerontology ; 61(4): 343-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25531813

RESUMEN

Atherosclerosis is a complex disease which can be described as an excessive fibrofatty, proliferative, inflammatory response to damage to the artery wall involving several cell types such as smooth muscle cells, monocyte-derived macrophages, lymphocytes, dendritic cells and platelets. On the other hand, atherosclerosis is a typical age-related degenerative pathology, which is characterized by signs of cell senescence in the arterial wall including reduced cell proliferation, irreversible growth arrest and apoptosis, increased DNA damage, the presence of epigenetic modifications, shortening of telomere length and mitochondrial dysfunction. The most prominent characteristics of mitochondrial aging are their structural alterations and mitochondrial DNA damage. The mechanisms of mitochondrial genome damage in the development of chronic age-related diseases such as atherosclerosis are not yet well understood. This review focuses on the latest findings from studies of those mutations of the mitochondrial genome which may play an important role in the development of atherosclerosis and which are, at the same time, also markers of mitochondrial aging and cell senescence.


Asunto(s)
Envejecimiento/fisiología , Aterosclerosis/etiología , Senescencia Celular/fisiología , Daño del ADN/fisiología , ADN Mitocondrial/fisiología , Humanos
18.
Int J Mol Sci ; 15(7): 12807-41, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25050779

RESUMEN

In atherosclerosis; blood low-density lipoproteins (LDL) are subjected to multiple enzymatic and non-enzymatic modifications that increase their atherogenicity and induce immunogenicity. Modified LDL are capable of inducing vascular inflammation through activation of innate immunity; thus, contributing to the progression of atherogenesis. The immunogenicity of modified LDL results in induction of self-antibodies specific to a certain type of modified LDL. The antibodies react with modified LDL forming circulating immune complexes. Circulating immune complexes exhibit prominent immunomodulatory properties that influence atherosclerotic inflammation. Compared to freely circulating modified LDL; modified LDL associated with the immune complexes have a more robust atherogenic and proinflammatory potential. Various lipid components of the immune complexes may serve not only as diagnostic but also as essential predictive markers of cardiovascular events in atherosclerosis. Accumulating evidence indicates that LDL-containing immune complexes can also serve as biomarker for macrovascular disease in type 1 diabetes.


Asunto(s)
Complejo Antígeno-Anticuerpo/sangre , Aterosclerosis/diagnóstico , Angiopatías Diabéticas/diagnóstico , Lipoproteínas LDL/sangre , Animales , Complejo Antígeno-Anticuerpo/inmunología , Biomarcadores/sangre , Diabetes Mellitus Tipo 1/complicaciones , Humanos , Lipoproteínas LDL/inmunología , Lipoproteínas LDL/metabolismo
19.
Curr Med Chem ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38441018

RESUMEN

BACKGROUND AND AIMS: The role of mitophagy in atherosclerosis has been extensively studied during the last few years. It was shown that mitophagy is involved in the regulation of macrophages, which are important players as immune cells in atherosclerosis development. In this study, we investigated the relationship between mitophagy and response to inflammatory stimulation of macrophage-like cells. Six cybrid cell lines with normal mitophagy, that is, increasing in response to stimulation, and 7 lines with defective mitophagy not responding to stimulation were obtained. The objective of the study was to compare the nature of the inflammatory response in normal and defective mitophagy in order to elucidate the role of mitophagy defects in inflammation. METHODS: We used cytoplasmic hybrids (cybrids) as cellular models, created using mitochondrial DNA from different atherosclerosis patients. Mitophagy was stimulated by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and assessed as the degree of colocalization of mitochondria with lysosomes using confocal microscopy. Western blotting methods were used for the determination of proteins involved in the exact mechanism of mitophagy. Experiments with stimulation of mitophagy show a high correlation between these two approaches (microscopy and blotting). The pro-inflammatory response of cybrids was stimulated with bacterial lipopolysaccharide (LPS). The extent of the inflammatory response was assessed by the secretion of cytokines CCL2, IL8, IL6, IL1ß, and TNF measured by ELISA. RESULTS: Basal level of secretion of cytokines CCL2, IL8 and TNF was 1.5-2 times higher in cultures of cybrids with defective mitophagy compared to cells with normal mitophagy. This suggests a persistently elevated inflammatory response in cells with defective mitophagy, even in the absence of an inflammatory stimulus. Such cells in the tissue will constantly recruit other immune cells, which is characteristic of macrophages derived from monocytes circulating in the blood of patients with atherosclerosis. We observed significant differences in the degree and type of response to inflammatory activation in cybrids with defective mitophagy. These differences were not so much quantitative as they were dramatically qualitative. Compared with cells with normal mitophagy, in cells with defective mitophagy, the relative (to basal) secretion of IL8, IL6 and IL1b increased after the second LPS activation. This indicates a possible lack of tolerance to inflammatory activation in cells with defective mitophagy, since typically, re-activation reveals a smaller pro-inflammatory cytokine response, allowing the inflammatory process to resolve. In cells with normal mitophagy, exactly this normal (tolerant) inflammatory reaction was observed. CONCLUSION: Data on the involvement of mitophagy, including defective mitophagy, in disturbances of the inflammatory response in sepsis, viral infections, autoimmune diseases and other pathologies have previously been reported. In this work, we studied the role of defective mitophagy in non-infectious chronic inflammatory diseases using the example of atherosclerosis. We showed a dramatic disruption of the inflammatory response associated with defective mitophagy. Compared with cybrids with normal mitophagy, in cybrids with defective mitophagy, the secretion of all studied cytokines changed significantly both quantitatively and qualitatively. In particular, the secretion of 3 of 5 cytokines demonstrated an intolerant inflammatory response manifested by increased secretion after repeated inflammatory stimulation. Such an intolerant reaction likely indicates a significant disruption of the pro-inflammatory response of macrophages, which can contribute to the chronification of inflammation. Elucidating the mechanisms of chronification of inflammation is extremely important for the search for fundamentally new pharmacological targets and the development of drugs for the prevention and treatment of chronic inflammatory diseases, including atherosclerosis and diseases characteristic of inflammation. Such diseases account for up to 80% of morbidity and mortality.

20.
Curr Med Chem ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38415442

RESUMEN

BACKGROUND: The relationship between the cellular pro-inflammatory response and intracellular lipid accumulation in atherosclerosis is not sufficiently studied. Transcriptomic analysis is one way to establish such a relationship. Previously, we identified 10 potential key genes (IL-15, CXCL8, PERK, IL-7, IL-7R, DUSP1, TIGIT, F2RL1, TSPYL2, and ANXA1) involved in cholesterol accumulation in macrophages. It should be noted that all these genes do not directly participate in cholesterol metabolism, but encode molecules related to inflammation. METHODS: In this study, we conducted a knock-down of the 10 identified key genes using siRNA to determine their possible role in cholesterol accumulation in macrophages. To assess cholesterol accumulation, human monocyte-derived macrophages (MDM) were incubated with atherogenic LDL from patients with atherosclerosis. Cholesterol content was assessed by the enzymatic method. Differentially expressed genes were identified with DESeq2 analysis. Master genes were determined by the functional analysis. RESULTS: We found that only 5 out of 10 genes (IL-15, PERK, IL-7, IL-7R, ANXA1) can affect intracellular lipid accumulation. Knock-down of the IL-15, PERK, and ANXA1 genes prevented lipid accumulation, while knock-down of the IL-7 and IL-7R genes led to increased intracellular lipid accumulation during incubation of MDM with atherogenic LDL. Seventeen overexpressed genes and 189 underexpressed genes were obtained in the DGE analysis, which allowed us to discover 20 upregulated and 86 downregulated metabolic pathways, a number of which are associated with chronic inflammation and insulin signaling. We also elucidated 13 master regulators of cholesterol accumulation that are immune response-associated genes. CONCLUSION: Thus, it was discovered that 5 inflammation-related master regulators may be involved in lipid accumulation in macrophages. Therefore, the pro-inflammatory response of macrophages may trigger foam cell formation rather than the other way around, where intracellular lipid accumulation causes an inflammatory response, as previously assumed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA