Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
Intervalo de año de publicación
1.
Planta ; 254(4): 78, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34536142

RESUMEN

MAIN CONCLUSION: 51 MdbZIP genes were identified from the apple genome by bioinformatics methods. MhABF-OE improved tolerance to saline-alkali stress in Arabidopsis, indicating it is involved in positive regulation of saline-alkali stress response. Saline-alkali stress is a major abiotic stress limiting plant growth all over the world. Members of the bZIP family play an important role in regulating gene expression in response to many kinds of biotic and abiotic stress, including salt stress. According to the transcriptome data, 51 MdbZIP genes responding to saline-alkali stress were identified in apple genome, and their gene structures, conserved protein motifs, phylogenetic analysis, chromosome localization, and promoter cis-acting elements were analyzed. Based on transcriptome data analysis, a MdbZIP family gene (MD15G1081800), which was highly expressed under stress, was selected to isolate and named as MhABF. Expression profile analysis by quantitative real-time PCR confirmed that the expression of MhABF in the leaves of Malus halliana was 10.6-fold higher than that of the control (0 days) after 2 days of stress. Then an MhABF gene was isolated from apple rootstock M. halliana. CaMV35S promoter drived MhABF gene expression vector was constructed to infect Arabidopsis with Agrobacterium-mediated infection. And overexpression MhABF gene plants were obtained. Compared with wild type, transgenic plants grew better under saline-alkali stress and the MhABF-OE lines showed higher chlorophyll content, POD, SOD and CAT activity, which indicated that they had strong resistance to stress. These results indicate that MhABF plays an important role in plant resistance to saline-alkali stress, which lays a foundation for further study on the functions in apple.


Asunto(s)
Arabidopsis , Malus , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Malus/genética , Malus/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA