Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Virol J ; 10: 170, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23721461

RESUMEN

BACKGROUND: Newcastle disease (ND) is one of the most deadly diseases of poultry around the globe. The disease is endemic in Pakistan and recurrent outbreaks are being reported regularly in wild captive, rural and commercial poultry flocks. Though, efforts have been made to characterize the causative agent in some of parts of the country, the genetic nature of strains circulating throughout Pakistan is currently lacking. MATERIAL AND METHODS: To ascertain the genetics of NDV, 452 blood samples were collected from 113 flocks, originating from all the provinces of Pakistan, showing high mortality (30-80%). The samples represented domesticated poultry (broiler, layer and rural) as well as wild captive birds (pigeons, turkeys, pheasants and peacock). Samples were screened with real-time PCR for both matrix and fusion genes (1792 bp), positive samples were subjected to amplification of full fusion gene and subsequent sequencing and phylogenetic analysis. RESULTS: The deduced amino acid sequence of the fusion protein cleavage site indicated the presence of motif (112RK/RQRR↓F117) typical for velogenic strains of NDV. Phylogenetic analysis of hypervariable region of the fusion gene indicated that all the isolates belong to lineage 5 of NDV except isolates collected from Khyber Pakhtunkhwa (KPK) province. A higher resolution of the phylogenetic analysis of lineage 5 showed the distribution of Pakistani NDV strains to 5b. However, the isolates from KPK belonged to lineage 4c; the first report of such lineage from this province. CONCLUSIONS: Taken together, data indicated the prevalence of multiple lineages of NDV in different poultry population including wild captive birds. Such understanding is crucial to underpin the nature of circulating strains of NDV, their potential for interspecies transmission and disease diagnosis and control strategies.


Asunto(s)
Variación Genética , Enfermedad de Newcastle/epidemiología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/genética , Animales , Aves , Análisis por Conglomerados , Genotipo , Epidemiología Molecular , Datos de Secuencia Molecular , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Pakistán/epidemiología , Filogenia , Aves de Corral , ARN Viral/genética , Análisis de Secuencia de ADN , Proteínas Virales de Fusión/genética
2.
Heliyon ; 9(9): e20057, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810123

RESUMEN

Applications: The heat transfer remains a huge problem for industrialists and engineers because many production processes required considerable amount of heat to finish the process successfully. Although, conventional fluids have large scale industrial applications but unable to provide huge amount of heat transfer. Therefore, the study is organized to propose a new ternary heat transfer model using different physical constraints. The key applications area of nanofluid heat transfer are chemical, applied thermal and food processing engineering. Purpose: and Methodology: The key purpose of this research is introduce a new ternary nanofluid model using the impressive effects of thermal radiations, surface convection and saddle/nodal points. The results simulated via RKF-45 and discussed in detail. Core findings: The strength of Al2O3 nanoparticles form 1%-7% (keeping fixed CuO and Cu as 4% and 6%) and s1 = -0.2,-0.4,-0.6,-0.8 controlled the fluid movement while s1 = 0.2,0.4,0.6,0.8 boosted the velocity. Increasing the convection process Bi = 0.1,0.2,0.3,0.4 increased the temperature significantly. Further, shear drag is maximum for ternary nanofluid and thermal radiations Rd = 0.1,0.2,0.3,0.4 enhances the heat transfer rate.

3.
Micromachines (Basel) ; 13(8)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36014148

RESUMEN

The interface debonding in carbon fiber-reinforced polymers is analyzed and evaluated using the extended finite element method (XFEM). In order to accurately evaluate the bonding properties between fibers and matrix, different tests were carried out, including the multiple tests for different orientations to study longitudinal, transversal, and shear properties of unidirectional carbon fiber-reinforced composites. Extensive experimentation has been performed in all the different groups and categories with different dimensions and parameters in order to ascertain the values of strength and the prediction of the damage to the structure. The experimental and numerical comparison provided significant trends and data to evaluate the mechanical properties of the interface. The values of stiffness and strength are compared and validated. Development of Representative Volume Element (RVE) for progressive damage model to these damage phenomena has already been performed as a feasibility study for the model, though it is not included in this particular paper. The results of this research for all the experimental and numerical sets can serve as reliable data in the microsimulation of devices and sensitive parameters that include carbon fiber-reinforced light metal matrix composites and makes a better investigative model that contributes to various conditions. It further offers an investigation of the microscopic deformation mechanisms in the composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA