Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Exp Bot ; 74(16): 4875-4887, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37422910

RESUMEN

Lentil (Lens culinaris Medik.) is commonly grown in drought-prone areas where terminal heat and drought are frequent. The limited-transpiration (TRlim) trait under high vapor pressure deficit (VPD) could be a way to conserve water and increase yield under water deficit conditions. The TRlim trait was examined in cultivated and wild lentil species together with its evolution throughout the breeding pipeline. Sixty-one accessions representing the six wild lentil species (L. orientalis, L. tomentosus, L. odemensis, L. lamottei, L. ervoides, and L. nigricans) and 13 interspecific advanced lines were evaluated in their transpiration response to high VPD. A large variation in transpiration rate (TR) response to increased VPD was recorded among wild lentil accessions, with 43 accessions exhibiting a breakpoint (BP) in their TR response to increasing VPD, with values ranging from 0.92 kPa to 3.38 kPa under greenhouse conditions. Ten genotypes for the interspecific advanced lines displayed a BP with an average of 1.95 kPa, much lower than previously reported for cultivated lentil. Results from field experiments suggest that the TRlim trait (BP=0.97 kPa) positively affected yield and yield-related parameters during the years with late-season water stress. The selection of TRlim genotypes for high VPD environments could improve lentil productivity in drought-prone areas.

2.
Int J Mol Sci ; 19(9)2018 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-30205560

RESUMEN

Crown rot (CR), caused by various Fusarium species, is a major disease in many cereal-growing regions worldwide. Fusarium culmorum is one of the most important species, which can cause significant yield losses in wheat. A set of 126 advanced International Maize and Wheat Improvement Center (CIMMYT) spring bread wheat lines were phenotyped against CR for field crown, greenhouse crown and stem, and growth room crown resistance scores. Of these, 107 lines were genotyped using Diversity Array Technology (DArT) markers to identify quantitative trait loci linked to CR resistance by genome-wide association study. Results of the population structure analysis grouped the accessions into three sub-groups. Genome wide linkage disequilibrium was large and declined on average within 20 cM (centi-Morgan) in the panel. General linear model (GLM), mixed linear model (MLM), and naïve models were tested for each CR score and the best model was selected based on quarantine-quarantine plots. Three marker-trait associations (MTAs) were identified linked to CR resistance; two of these on chromosome 3B were associated with field crown scores, each explaining 11.4% of the phenotypic variation and the third MTA on chromosome 2D was associated with greenhouse stem score and explained 11.6% of the phenotypic variation. Together, these newly identified loci provide opportunity for wheat breeders to exploit in enhancing CR resistance via marker-assisted selection or deployment in genomic selection in wheat breeding programs.


Asunto(s)
Fusarium/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Triticum/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Desequilibrio de Ligamiento , Fitomejoramiento
3.
Breed Sci ; 62(1): 38-45, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23136512

RESUMEN

Aegilops tauschii Coss. is the D-genome donor to hexaploid bread wheat (Triticum aestivum) and is the most promising wild species as a genetic resource for wheat breeding. To study the population structure and diversity of 81 Ae. tauschii accessions collected from various regions of its geographical distribution, the genomic representation of these lines were used to develop a diversity array technology (DArT) marker array. This Ae. tauschii array and a previously developed DArT wheat array were used to scan the genomes of the 81 accessions. Out of 7500 markers (5500 wheat and 2000 Ae. tauschii), 4449 were polymorphic (3776 wheat and 673 Ae. tauschii). Phylogenetic and population structure studies revealed that the accessions could be divided into three groups. The two Ae. tauschii subspecies could also be separately clustered, suggesting that the current taxonomy might be valid. DArT markers are effective to detect very small polymorphisms. The information obtained about Ae. tauschii in the current study could be useful for wheat breeding. In addition, the new DArT array from this Ae. tauschii population is expected to be an effective tool for hexaploid wheat studies.

4.
Life (Basel) ; 12(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35330123

RESUMEN

Triticum aestivum L., also known as common wheat, is affected by many biotic stresses. Root diseases are the most difficult to tackle due to the complexity of phenotypic evaluation and the lack of resistant sources compared to other biotic stress factors. Soil-borne pathogens such as the root-lesion nematodes caused by the Pratylenchus species and crown rot caused by various Fusarium species are major wheat root diseases, causing substantial yield losses globally. A set of 189 advanced spring bread wheat lines obtained from the International Maize and Wheat Improvement Center (CIMMYT) were genotyped with 4056 single nucleotide polymorphisms (SNP) markers and screened for root-lesion nematodes and crown rot resistance. Population structure revealed that the genotypes could be divided into five subpopulations. Genome-Wide Association Studies were carried out for both resistances to Pratylenchus and Fusarium species. Based on our results, 11 different SNPs on chromosomes 1A, 1B, 2A, 3A, 4A, 5B, and 5D were significantly associated with root-lesion nematode resistance. Seven markers demonstrated association with P. neglectus, while the remaining four were linked to P. thornei resistance. In the case of crown rot, eight different markers on chromosomes 1A, 2B, 3A, 4B, 5B, and 7D were associated with Fusarium crown rot resistance. Identification and screening of root diseases is a challenging task; therefore, the newly identified resistant sources/genotypes could be exploited by breeders to be incorporated in breeding programs. The use of the identified markers in marker-assisted selection could enhance the selection process and cultivar development with root-lesion nematode and crown rot resistance.

5.
Front Genet ; 13: 972696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36437965

RESUMEN

Drought stress is one of the abiotic stresses restricting plant development, reproductive growth, and survival. In the present study, the effect of drought stress and post-drought recovery for the selected local wheat cultivar, Atta Habib, was studied. Wheat was grown for 16 days followed by drought stress for 7 days and allowed to recover for 7 days after the removal of the drought stress. Same-aged untreated plants were also grown as a control. The effect of drought stress and post-drought recovery on morphology (root length, shoot length, root weight, and shoot weight), enzymatic activity, and fatty acid profile were analyzed. The results showed that shoot weight (93.1 mg), root weight (85.2 mg), and shoot length (11.1 cm) decreased in the stressed plants but increased steadily in the recovered plants compared to the same-aged control plants, while root length showed a higher increase (14.0 cm) during drought stress and tended to normalize during the recovery phase (13.4 cm). The ascorbate peroxidase activity increased in the stressed plants (5.44 unit/mg protein) compared to the control, while gradually normalizing in the recovery phase (5.41 unit/mg protein). Gas chromatography coupled mass spectrometric analysis revealed abundance changes in important fatty acids, such as palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid. Palmitic acid (39.1%) and oleic acid (2.11%) increased in the drought-stressed plants, while a reduction in linoleic acid (6.85%) and linolenic acid (51.18%) was observed compared to the same-aged control plants, i.e., palmitic (33.71%), oleic (0.95%), linoleic (7.52%), and linolenic acid (55.23%). The results suggest that wheat tries to recover in the post-drought stage by repairing oxidative damage through ascorbate peroxidase, and by adjusting fatty acid abundances under drought stress and during the post-drought phase in an effort to maintain membranes' integrity and a suitable fat metabolism route, thus helping recovery. Targeted metabolomics may be further used to explore the role of other metabolites in the drought-stress response mechanism in wheat. Furthermore, this relatively little explored avenue of post-drought recovery needs more detailed studies involving multiple stress durations.

6.
Front Plant Sci ; 13: 905320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845662

RESUMEN

Chickpea is an important source of plant-based protein and mineral elements such as iron (Fe) and zinc (Zn). The development of superior high-yielding germplasm with high nutritional value becomes central for any breeding program. Chickpea biofortified and nutrient-dense seeds can contribute to mitigate many human health problems associated with protein and micronutrients deficiency. In this study, 282 advanced chickpea lines were grown under field conditions to evaluate their agronomic performances and nutritional quality value. The trial was conducted under winter planting conditions during the cropping season 2017/2018 at ICARDA-Marchouch research station, Morocco. Results revealed high genetic variation and significant differences between the tested genotypes for all studied parameters. Under field conditions, the grain yield (GY) varied from 0.57 to 1.81 (t.ha-1), and 100-seed weight (HSW) ranged from 23.1 to 50.9 g. Out of the 282 genotypes, only 4 genotypes (i.e., S130109, S130058, S130066, and S130157) combined both good agronomic performances (GY, HSW) and high nutritional quality (protein, macronutrients, and micronutrients). Protein content ranged from 18.9 to 32.4%. For the whole collection, Fe content varied from 31.2 to 81 ppm, while Zn content ranged from 32.1 to 86.1 ppm. Correlation analysis indicated that the studied traits were significantly intercorrelated, with negative correlation between protein content and Zn concentration. Positive correlations were observed between grain filling time (F2M) and the micronutrients Zn, Cu, and Mn and macroelements K and Mg. Low positive correlation was also recorded between Pr and Fe concentrations. No significant correlation was observed between Fe and Zn. Positive correlations observed between main agronomic and nutritional quality traits makes easy any simultaneous enhancement when combining these traits.

7.
Breed Sci ; 61(4): 347-57, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23136471

RESUMEN

Few genes are available to develop drought-tolerant bread wheat (Triticum aestivum L.) cultivars. One way to enhance bread wheat's genetic diversity would be to take advantage of the diversity of wild species by creating synthetic hexaploid wheat (SW) with the genomic constitution of bread wheat. In this study, we compared the expression of traits encoded at different ploidy levels and evaluated the applicability of Aegilops tauschii drought-related traits using 33 Ae. tauschii accessions along with their corresponding SW lines under well-watered and drought conditions. We found wide variation in Ae. tauschii, and even wider variation in the SW lines. Some SW lines were more drought-tolerant than the standard cultivar Cham 6. Aegilops tauschii from some regions gave better performing SW lines. The traits of Ae. tauschii were not significantly correlated with their corresponding SW lines, indicating that the traits expressed in wild diploid relatives of wheat may not predict the traits that will be expressed in SW lines derived from them. We suggest that, regardless of the adaptability and performance of the Ae. tauschii under drought, production of SW could probably result in genotypes with enhanced trait expression due to gene interactions, and that the traits of the synthetic should be evaluated in hexaploid level.

8.
Pak J Biol Sci ; 10(15): 2490-4, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19070120

RESUMEN

Estimation of genetic diversity of Brassica germplasm provides the basis for rapeseed/mustard genetic improvement. Studies were undertaken to estimate the genetic diversity of 30 lines of Brassica napus using Randomly Amplified Polymorphic DNA (RAPD) primers. A total of 30 B. napus genotypes of local and exotic origin were characterized using molecular markers. Four RAPD primers were used to estimate the genetic distances among the genotypes in all the possible combinations. The genetic diversity study revealed different levels of genetic polymorphism for RAPD primers GLA05, GLA07, GLA09 and GLA 10, resulting in amplification of 5.7, 3.5, 3.1 and 5.4 scorable bands (loci) per genotype, respectively. Individual genetic distances observed among B. napus genotypes ranged from 6.5 to 51%. Bivariate data matrix was generated and genetic distances were calculated using Unweighted Pair Group of Arithmetic Mean (UPGMA) procedure. The UPGMA cluster analyses revealed maximum genetic dissimilarity for 8966-1 and 8969-1 genotypes, closely followed by Ganyou-5, 89127-1, 89111-2 and Mlep-048. It is recommended that among the thirty B. napus genotypes, genetically distinct lines pointed out in the present study, should be used in future breeding programs for improvement of Brassica napus.


Asunto(s)
Brassica napus/genética , Variación Genética , Brassica napus/clasificación , Genotipo , Filogenia , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA