Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(3): 1351-1364, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36434054

RESUMEN

Spatial learning and memory flexibility are known to require long-term potentiation (LTP) and long-term depression (LTD), respectively, on a cellular basis. We previously showed that cyclin Y (CCNY), a synapse-remodeling cyclin, is a novel actin-binding protein and an inhibitory regulator of functional and structural LTP in vitro. In this study, we report that Ccny knockout (KO) mice exhibit enhanced LTP and weak LTD at Schaffer collateral-CA1 synapses in the hippocampus. In accordance with enhanced LTP, Ccny KO mice showed improved spatial learning and memory. However, although previous studies reported that normal LTD is necessary for memory flexibility, Ccny KO mice intriguingly showed improved memory flexibility, suggesting that weak LTD could exert memory flexibility when combined with enhanced LTP. At the molecular level, CCNY modulated spatial learning and memory flexibility by distinctively affecting the cofilin-actin signaling pathway in the hippocampus. Specifically, CCNY inhibited cofilin activation by original learning, but reversed such inhibition by reversal learning. Furthermore, viral-mediated overexpression of a phosphomimetic cofilin-S3E in hippocampal CA1 regions enhanced LTP, weakened LTD, and improved spatial learning and memory flexibility, thus mirroring the phenotype of Ccny KO mice. In contrast, the overexpression of a non-phosphorylatable cofilin-S3A in hippocampal CA1 regions of Ccny KO mice reversed the synaptic plasticity, spatial learning, and memory flexibility phenotypes observed in Ccny KO mice. Altogether, our findings demonstrate that LTP and LTD cooperatively regulate memory flexibility. Moreover, CCNY suppresses LTP while facilitating LTD in the hippocampus and negatively regulates spatial learning and memory flexibility through the control of cofilin-actin signaling, proposing CCNY as a learning regulator modulating both memorizing and forgetting processes.


Asunto(s)
Actinas , Aprendizaje Espacial , Ratones , Animales , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Ratones Noqueados , Ciclinas/genética , Ciclinas/metabolismo , Factores Despolimerizantes de la Actina/metabolismo
2.
Pharmacol Res ; 160: 105100, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32739426

RESUMEN

Cyclin Y (CCNY) is a member of cyclin superfamily proteins involved in the regulation of the cell cycle in proliferating cells. Intriguingly, CCNY is highly expressed in terminally differentiated neuronal cells of multiple brain regions and acts as a postsynaptic protein, which plays an inhibitory role in long-term potentiation. However, the pathophysiological significance of CCNY in the nervous system remains largely unexplored. In this study, we revisited our RNA-sequencing (RNA-seq) data obtained from cultured hippocampal neurons virally overexpressing or depleting CCNY. Using RNA-seq-based bioinformatic disease analysis and synaptic gene ontology analysis, we identified that numerous genes associated with epilepsy (e.g. Chrna4, Gabrd, Nhlrc1, Reln, Samd12, Slc6a1, etc.) or neurodegenerative diseases (e.g. Psen1, Pdyn, Ndrg1, etc.) are affected by the level of CCNY expression. In agreement with the RNA-seq-based disease analysis, we found that Ccny knockout (KO) mice are more susceptible to kainic acid-induced epilepsy than wild-type mice. In addition, some epilepsy-associated genes that are regulated by CCNY levels were further validated in the brain of Ccny KO mice at the mRNA and protein levels. Collectively, our findings indicate that CCNY shifts the expression profile of epilepsy-associated genes and exerts a protective effect against kainic acid-induced epilepsy, suggesting CCNY as a potential pharmaceutical candidate for the treatment of epilepsy.


Asunto(s)
Ciclinas/genética , Epilepsia/inducido químicamente , Epilepsia/genética , Agonistas de Aminoácidos Excitadores , Ácido Kaínico , Animales , Química Encefálica/genética , Células Cultivadas , Biología Computacional , Femenino , Genotipo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neurodegenerativas/genética , RNA-Seq , Proteína Reelina
3.
Prog Neurobiol ; 198: 101915, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32966834

RESUMEN

While positive regulators of hippocampal long-term potentiation (LTP) have extensively been investigated, relatively little is known about the inhibitory regulators of LTP. We previously reported that Cyclin Y (CCNY), a member of cyclin family generally known to function in proliferating cells, is a novel postsynaptic protein that serves as a negative regulator of functional LTP. However, whether CCNY plays a role in structural LTP, which is mechanistically linked to functional LTP, and which mechanisms are involved in the CCNY-mediated suppression of LTP at the molecular level remain elusive. Here, we report that CCNY negatively regulates the plasticity-induced changes in spine morphology through the control of actin dynamics. We observed that CCNY directly binds to filamentous actin and interferes with LTP-induced actin polymerization as well as depolymerization by blocking the activation of cofilin, an actin-depolymerizing factor, thus resulting in less plastic spines and the impairment of structural LTP. These data suggest that CCNY acts as an inhibitory regulator for both structural and functional LTP by modulating actin dynamics through the cofilin-actin pathway. Collectively, our findings provide a mechanistic insight into the inhibitory modulation of hippocampal LTP by CCNY, highlighting a novel function of a cyclin family protein in non-proliferating neuronal cells.


Asunto(s)
Plasticidad Neuronal , Factores Despolimerizantes de la Actina , Actinas , Ciclinas , Proteínas de Microfilamentos , Sinapsis
4.
Arch Pharm Res ; 42(5): 426-435, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30838509

RESUMEN

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is a major glutamate-gated ion channel in the brain and is important for synaptic transmission, synaptic plasticity, and learning. Palmitoylation, a post-translational modification, is a critical process regulating AMPAR trafficking, synaptic function and plasticity, and learning and memory in health and diseases. In this review, we discuss current knowledge on the palmitoylation-dependent regulation of AMPAR trafficking and functions. We focus on the palmitoylation of AMPARs and other synaptic proteins that directly or indirectly interact with AMPARs, including postsynaptic density 95, glutamate receptor-interacting protein/AMPAR-binding protein, A-kinase anchoring protein 79/150, and protein interacting with C kinase 1. Finally, we discuss what future studies should address in the field of palmitoylation-dependent AMPAR trafficking and function with regard to physiology and neurodegenerative diseases.


Asunto(s)
Encéfalo/metabolismo , Lipoilación/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Receptores AMPA/metabolismo , Sinapsis/fisiología , Animales , Encéfalo/citología , Humanos , Modelos Animales , Enfermedades Neurodegenerativas/patología , Plasticidad Neuronal/fisiología , Transporte de Proteínas/fisiología , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA