Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35929355

RESUMEN

A newly invented post-translational modification (PTM), phosphoglycerylation, has shown its essential role in the construction and functional properties of proteins and dangerous human diseases. Hence, it is very urgent to know about the molecular mechanism behind the phosphoglycerylation process to develop the drugs for related diseases. But accurately identifying of phosphoglycerylation site from a protein sequence in a laboratory is a very difficult and challenging task. Hence, the construction of an efficient computation model is greatly sought for this purpose. A little number of computational models are currently available for identifying the phosphoglycerylation sites, which are not able to reach their prediction capability at a satisfactory level. Therefore, an effective predictor named PLP_FS has been designed and constructed to identify phosphoglycerylation sites in this study. For the training purpose, an optimal number of feature sets was obtained by fusion of multiple F_Score feature selection techniques from the features generated by three types of sequence-based feature extraction methods and fitted with the support vector machine classification technique to the prediction model. On the other hand, the k-neighbor near cleaning and SMOTE methods were also implemented to balance the benchmark dataset. The suggested model in 10-fold cross-validation obtained an accuracy of 99.22%, a sensitivity of 98.17% and a specificity of 99.75% according to the experimental findings, which are better than other currently available predictors for accurately identifying the phosphoglycerylation sites.


Asunto(s)
Lisina , Máquina de Vectores de Soporte , Algoritmos , Secuencia de Aminoácidos , Biología Computacional/métodos , Humanos , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo
2.
Biochimie ; 192: 125-135, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34627982

RESUMEN

Lysine formylation is a newly discovered and mostly interested type of post-translational modification (PTM) that is generally found on core and linker histone proteins of prokaryote and eukaryote and plays various important roles on the regulation of various cellular mechanisms. Hence, it is very urgent to properly identify formylation site in protein for understanding the molecular mechanism of formylation deeply and defining drug for relevant diseases. As experimentally identification of formylation site using traditional processes are expensive and time consuming, a simple and high speedy mathematical model for predicting accurately lysine formylation sites is highly desired. A useful computational model named PLF_SVM is deigned and proposed in this study by using binary encoding (BE), amino acid composition (AAC), reverse position relative incidence matrix (RPRIM), position relative incidence matrix (PRIM), and position specific amino acid propensity (PSAAP) feature generation methods for predicting formylated and non-formylated lysine sites. Besides, the Synthetic Minority Oversampling Technique (SMOTE) and a proposed sample selection strategy named EnSVM are applied to handle the imbalance training dataset problem. Thereafter, the optimal number of features are selected by F-score method to train the model. Finally, it has been seen that PLF_SVM outperforms the state-of-the-art approaches in validation and independent test with an accuracy of 98.61% and 98.77% respectively. At https://plf-svm.herokuapp.com/, a user-friendly web tool is also created for identifying formylation sites. Therefore, the proposed method may be helpful guideline for the analysis and prediction of formylated lysine and knowing the process of cellular regulation.


Asunto(s)
Histonas/química , Lisina/química , Procesamiento Proteico-Postraduccional , Máquina de Vectores de Soporte , Acilación , Animales , Histonas/metabolismo , Humanos , Lisina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA