Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 65(14): 3993-4008, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24803504

RESUMEN

Leaf senescence is an active process with a pivotal impact on plant productivity. It results from extensive signalling cross-talk coordinating environmental factors with intrinsic age-related mechanisms. Although many studies have shown that leaf senescence is affected by a range of external parameters, knowledge about the regulatory systems that govern the interplay between developmental programmes and environmental stress is still vague. Salinity is one of the most important environmental stresses that promote leaf senescence and thus affect crop yield. Improving salt tolerance by avoiding or delaying senescence under stress will therefore play an important role in maintaining high agricultural productivity. Experimental evidence suggests that hydrogen peroxide (H2O2) functions as a common signalling molecule in both developmental and salt-induced leaf senescence. In this study, microarray-based gene expression profiling on Arabidopsis thaliana plants subjected to long-term salinity stress to induce leaf senescence was performed, together with co-expression network analysis for H2O2-responsive genes that are mutually up-regulated by salt induced- and developmental leaf senescence. Promoter analysis of tightly co-expressed genes led to the identification of seven cis-regulatory motifs, three of which were known previously, namely CACGTGT and AAGTCAA, which are associated with reactive oxygen species (ROS)-responsive genes, and CCGCGT, described as a stress-responsive regulatory motif, while the others, namely ACGCGGT, AGCMGNC, GMCACGT, and TCSTYGACG were not characterized previously. These motifs are proposed to be novel elements involved in the H2O2-mediated control of gene expression during salinity stress-triggered and developmental senescence, acting through upstream transcription factors that bind to these sites.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regiones Promotoras Genéticas/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes , Peróxido de Hidrógeno/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Familia de Multigenes , Motivos de Nucleótidos/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Salinidad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcriptoma/genética
2.
Plant Sci ; 283: 211-223, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128691

RESUMEN

Drought resistance is a crucial attribute of plants and to properly decipher its mechanisms, a valuable plant model is required. Lolium multiflorum is a forage grass characterized by a low level of abiotic stress resistance, whereas Festuca arundinacea is recognized as a species with drought resistance, including both stress avoidance and tolerance strategies. These two species can be crossed with each other. Two closely related L. multiflorum/F. arundinacea introgression forms with distinct levels of field drought resistance were involved, thus enabling the dissection of this complex trait into its crucial components. The processes occurring in roots were shown to be the most significant for the expression of drought resistance. Thus, the analysis was focused on the root architecture and the accumulation of selected hormones, primary metabolites and glycerolipids in roots. The introgression form, with a higher resistance to field water deficit was characterized by a deeper soil penetration by its roots, and it had a higher accumulation level of primary metabolites, including well recognized osmoprotectants, such as proline, sucrose or maltose, and an increase in phosphatidylcholine to phosphatidylethanolamine ratio compared to the low resistant form. A comprehensive model of root performance under water deficit conditions is presented here for the first time for the grass species of the Lolium-Festuca complex.


Asunto(s)
Festuca/anatomía & histología , Lolium/anatomía & histología , Raíces de Plantas/anatomía & histología , Deshidratación , Festuca/crecimiento & desarrollo , Festuca/metabolismo , Metabolismo de los Lípidos , Lolium/crecimiento & desarrollo , Lolium/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA