Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(2): e1010980, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38329927

RESUMEN

Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from genes and proteins to cells and tissues, up to the full organism. In fact, any phenotype for an organism is dictated by the interplay among these scales. We conducted a multilayer network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed using mutual information for topological analysis, and Boolean simulations were constructed using Pearson correlation to identified paths within and among all layers. The path more commonly found from the Boolean simulations connects protein MK03, with total T cells, the thickness of the retinal nerve fiber layer (RNFL), and the walking speed. This path contains nodes involved in protein phosphorylation, glial cell differentiation, and regulation of stress-activated MAPK cascade, among others. Specific paths identified were subsequently analyzed by flow cytometry at the single-cell level. Combinations of several proteins (GSK3AB, HSBP1 or RS6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) were part of the paths explaining the clinical phenotype. The advantage of the path identified from the Boolean simulations is that it connects information about these known biological pathways with the layers at higher scales (retina damage and disability). Overall, the identified paths provide a means to connect the molecular aspects of MS with the overall phenotype.


Asunto(s)
Esclerosis Múltiple , Humanos , Estudios Prospectivos , Tomografía de Coherencia Óptica/métodos , Retina , Encéfalo , Proteínas de Choque Térmico
2.
J Neurol Neurosurg Psychiatry ; 95(5): 419-425, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37989566

RESUMEN

BACKGROUND: We investigated the association between changes in retinal thickness and cognition in people with MS (PwMS), exploring the predictive value of optical coherence tomography (OCT) markers of neuroaxonal damage for global cognitive decline at different periods of disease. METHOD: We quantified the peripapillary retinal nerve fibre (pRFNL) and ganglion cell-inner plexiform (GCIPL) layers thicknesses of 207 PwMS and performed neuropsychological evaluations. The cohort was divided based on disease duration (≤5 years or >5 years). We studied associations between changes in OCT and cognition over time, and assessed the risk of cognitive decline of a pRFNL≤88 µm or GCIPL≤77 µm and its predictive value. RESULTS: Changes in pRFNL and GCIPL thickness over 3.2 years were associated with evolution of cognitive scores, in the entire cohort and in patients with more than 5 years of disease (p<0.01). Changes in cognition were related to less use of disease-modifying drugs, but not OCT metrics in PwMS within 5 years of onset. A pRFNL≤88 µm was associated with earlier cognitive disability (3.7 vs 9.9 years) and higher risk of cognitive deterioration (HR=1.64, p=0.022). A GCIPL≤77 µm was not associated with a higher risk of cognitive decline, but a trend was observed at ≤91.5 µm in PwMS with longer disease (HR=1.81, p=0.061). CONCLUSIONS: The progressive retinal thinning is related to cognitive decline, indicating that cognitive dysfunction is a late manifestation of accumulated neuroaxonal damage. Quantifying the pRFNL aids in identifying individuals at risk of cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Células Ganglionares de la Retina/patología , Retina/patología , Tomografía de Coherencia Óptica/métodos , Disfunción Cognitiva/complicaciones , Atrofia/patología
3.
Neuroimage ; 265: 119800, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481413

RESUMEN

Multisite machine-learning neuroimaging studies, such as those conducted by the ENIGMA Consortium, need to remove the differences between sites to avoid effects of the site (EoS) that may prevent or fraudulently help the creation of prediction models, leading to impoverished or inflated prediction accuracy. Unfortunately, we have shown earlier that current Methods Aiming to Remove the EoS (MAREoS, e.g., ComBat) cannot remove complex EoS (e.g., including interactions between regions). And complex EoS may bias the accuracy. To overcome this hurdle, groups worldwide are developing novel MAREoS. However, we cannot assess their effectiveness because EoS may either inflate or shrink the accuracy, and MAREoS may both remove the EoS and degrade the data. In this work, we propose a strategy to measure the effectiveness of a MAREoS in removing different types of EoS. FOR MAREOS DEVELOPERS, we provide two multisite MRI datasets with only simple true effects (i.e., detectable by most machine-learning algorithms) and two with only simple EoS (i.e., removable by most MAREoS). First, they should use these datasets to fit machine-learning algorithms after applying the MAREoS. Second, they should use the formulas we provide to calculate the relative accuracy change associated with the MAREoS in each dataset and derive an EoS-removal effectiveness statistic. We also offer similar datasets and formulas for complex true effects and EoS that include first-order interactions. FOR MACHINE-LEARNING RESEARCHERS, we provide an extendable benchmark website to show: a) the types of EoS they should remove for each given machine-learning algorithm and b) the effectiveness of each MAREoS for removing each type of EoS. Relevantly, a MAREoS only able to remove the simple EoS may suffice for simple machine-learning algorithms, whereas more complex algorithms need a MAREoS that can remove more complex EoS. For instance, ComBat removes all simple EoS as needed for predictions based on simple lasso algorithms, but it leaves residual complex EoS that may bias the predictions based on standard support vector machine algorithms.


Asunto(s)
Algoritmos , Benchmarking , Humanos , Aprendizaje Automático , Encéfalo/diagnóstico por imagen , Neuroimagen
4.
J Neurol Neurosurg Psychiatry ; 94(11): 916-923, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37321841

RESUMEN

BACKGROUND: We aimed to describe the severity of the changes in brain diffusion-based connectivity as multiple sclerosis (MS) progresses and the microstructural characteristics of these networks that are associated with distinct MS phenotypes. METHODS: Clinical information and brain MRIs were collected from 221 healthy individuals and 823 people with MS at 8 MAGNIMS centres. The patients were divided into four clinical phenotypes: clinically isolated syndrome, relapsing-remitting, secondary progressive and primary progressive. Advanced tractography methods were used to obtain connectivity matrices. Then, differences in whole-brain and nodal graph-derived measures, and in the fractional anisotropy of connections between groups were analysed. Support vector machine algorithms were used to classify groups. RESULTS: Clinically isolated syndrome and relapsing-remitting patients shared similar network changes relative to controls. However, most global and local network properties differed in secondary progressive patients compared with the other groups, with lower fractional anisotropy in most connections. Primary progressive participants had fewer differences in global and local graph measures compared with clinically isolated syndrome and relapsing-remitting patients, and reductions in fractional anisotropy were only evident for a few connections. The accuracy of support vector machine to discriminate patients from healthy controls based on connection was 81%, and ranged between 64% and 74% in distinguishing among the clinical phenotypes. CONCLUSIONS: In conclusion, brain connectivity is disrupted in MS and has differential patterns according to the phenotype. Secondary progressive is associated with more widespread changes in connectivity. Additionally, classification tasks can distinguish between MS types, with subcortical connections being the most important factor.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Mapeo Encefálico/métodos , Fenotipo , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen
5.
Neuroradiology ; 64(11): 2103-2117, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35864180

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune disease characterized by demyelinating lesions that are often visible on magnetic resonance imaging (MRI). Segmentation of these lesions can provide imaging biomarkers of disease burden that can help monitor disease progression and the imaging response to treatment. Manual delineation of MRI lesions is tedious and prone to subjective bias, while automated lesion segmentation methods offer objectivity and speed, the latter being particularly important when analysing large datasets. Lesion segmentation can be broadly categorised into two groups: cross-sectional methods, which use imaging data acquired at a single time-point to characterise MRI lesions; and longitudinal methods, which use imaging data from the same subject acquired at two or more different time-points to characterise lesions over time. The main objective of longitudinal segmentation approaches is to more accurately detect the presence of new MS lesions and the growth or remission of existing lesions, which may be effective biomarkers of disease progression and treatment response. This paper reviews articles on longitudinal MS lesion segmentation methods published over the past 10 years. These are divided into traditional machine learning methods and deep learning techniques. PubMed articles using longitudinal information and comparing fully automatic two time point segmentations in any step of the process were selected. Nineteen articles were reviewed. There is an increasing number of deep learning techniques for longitudinal MS lesion segmentation that are promising to help better understand disease progression.


Asunto(s)
Esclerosis Múltiple , Estudios Transversales , Progresión de la Enfermedad , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología
6.
Hum Brain Mapp ; 42(18): 5911-5926, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34547147

RESUMEN

Quadrantanopia caused by inadvertent severing of Meyer's Loop of the optic radiation is a well-recognised complication of temporal lobectomy for conditions such as epilepsy. Dissection studies indicate that the anterior extent of Meyer's Loop varies considerably between individuals. Quantifying this for individual patients is thus an important step to improve the safety profile of temporal lobectomies. Previous attempts to delineate Meyer's Loop using diffusion MRI tractography have had difficulty estimating its full anterior extent, required manual ROI placement, and/or relied on advanced diffusion sequences that cannot be acquired routinely in most clinics. Here we present CONSULT: a pipeline that can delineate the optic radiation from raw DICOM data in a completely automated way via a combination of robust pre-processing, segmentation, and alignment stages, plus simple improvements that bolster the efficiency and reliability of standard tractography. We tested CONSULT on 696 scans of predominantly healthy participants (539 unique brains), including both advanced acquisitions and simpler acquisitions that could be acquired in clinically acceptable timeframes. Delineations completed without error in 99.4% of the scans. The distance between Meyer's Loop and the temporal pole closely matched both averages and ranges reported in dissection studies for all tested sequences. Median scan-rescan error of this distance was 1 mm. When tested on two participants with considerable pathology, delineations were successful and realistic. Through this, we demonstrate not only how to identify Meyer's Loop with clinically feasible sequences, but also that this can be achieved without fundamental changes to tractography algorithms or complex post-processing methods.


Asunto(s)
Imagen de Difusión Tensora/métodos , Interpretación de Imagen Asistida por Computador/métodos , Vías Visuales/anatomía & histología , Vías Visuales/diagnóstico por imagen , Adulto , Lobectomía Temporal Anterior/métodos , Femenino , Humanos , Masculino , Cuidados Preoperatorios/métodos , Adulto Joven
7.
Magn Reson Med ; 86(1): 471-486, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33547656

RESUMEN

PURPOSE: To develop an accelerated postprocessing pipeline for reproducible and efficient assessment of white matter lesions using quantitative magnetic resonance fingerprinting (MRF) and deep learning. METHODS: MRF using echo-planar imaging (EPI) scans with varying repetition and echo times were acquired for whole brain quantification of T1 and T2∗ in 50 subjects with multiple sclerosis (MS) and 10 healthy volunteers along 2 centers. MRF T1 and T2∗ parametric maps were distortion corrected and denoised. A CNN was trained to reconstruct the T1 and T2∗ parametric maps, and the WM and GM probability maps. RESULTS: Deep learning-based postprocessing reduced reconstruction and image processing times from hours to a few seconds while maintaining high accuracy, reliability, and precision. Mean absolute error performed the best for T1 (deviations 5.6%) and the logarithmic hyperbolic cosinus loss the best for T2∗ (deviations 6.0%). CONCLUSIONS: MRF is a fast and robust tool for quantitative T1 and T2∗ mapping. Its long reconstruction and several postprocessing steps can be facilitated and accelerated using deep learning.


Asunto(s)
Aprendizaje Profundo , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sustancia Blanca/diagnóstico por imagen
8.
J Autoimmun ; 117: 102580, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33338707

RESUMEN

BACKGROUND AND AIM: There is increasing interest regarding SARS-CoV-2 infection in patients with autoimmune and immune-mediated inflammatory diseases (AI/IMID) with some discrepancies in different cohorts about their risk and outcomes. The aim was to describe a multidisciplinary cohort of patients with AI/IMID and symptomatic SARS-CoV-2 infection in a single tertiary center and analyze sociodemographic, clinical, and therapeutic factors associated with poor outcomes. METHODS: A retrospective observational study was conducted from the 1st of March until May 29th, 2020 in a University tertiary hospital in Barcelona, Spain. Patients with an underlying AI/IMID and symptomatic SARS-CoV-2 infection were identified in our local SARS-CoV-2 infection database. Controls (2:1) were selected from the same database and matched by age and gender. The primary outcome was severe SARS-CoV-2 infection, which was a composite endpoint including admission to the intensive care unit (ICU), need for mechanical ventilation (MV), and/or death. Several covariates including age, sex, and comorbidities among others were combined into a multivariate model having severe SARS-CoV-2 as the dependent variable. Also, a sensitivity analysis was performed evaluating AID and IMID separately. RESULTS: The prevalence of symptomatic SARS-CoV-2 infection in a cohort of AI/IMID patients was 1.3%. Eighty-five patients with AI/IMID and symptomatic SARS-CoV-2 were identified, requiring hospitalization in 58 (68%) cases. A total of 175 patients admitted for SARS-CoV-2 (58 with AI/IMID and 117 matched-controls) were analyzed. In logistic regression analysis, a significant inverse association between AI/IMID group and severe SARS-CoV-2 (OR 0.28; 95% CI 0.12-0.61; p = 0.001), need of MV (OR 0.20; IC 95% 0.05-0.71; p = 0.014), and ICU admission (OR 0.25; IC 95% 0.10-0.62; p = 0.003) was found. CONCLUSIONS: Patients with AI/IMID who require admission for SARS-CoV-2 infection have a lower risk of developing severe disease, including the need to stay in the ICU and MV.


Asunto(s)
Enfermedades Autoinmunes/epidemiología , COVID-19/epidemiología , Sistema de Registros , SARS-CoV-2/fisiología , Anciano , Enfermedades Autoinmunes/mortalidad , COVID-19/mortalidad , Estudios de Cohortes , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Comunicación Interdisciplinaria , Masculino , Persona de Mediana Edad , Prevalencia , Respiración Artificial/estadística & datos numéricos , Estudios Retrospectivos , Factores de Riesgo , España/epidemiología , Análisis de Supervivencia , Resultado del Tratamiento
9.
Mult Scler ; 27(11): 1706-1716, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33433258

RESUMEN

BACKGROUND: Prognostic markers are needed to guide multiple sclerosis (MS) management in the context of large availability of disease-modifying drugs (DMDs). OBJECTIVE: To investigate the role of cerebrospinal fluid (CSF) markers to inform long-term MS outcomes. METHODS: Demographic features, IgM index, oligoclonal IgM bands (OCMB), lipid-specific OCMB, CSF neurofilament light chain protein levels, expanded disability status scale (EDSS), relapses and DMD use over the study period and peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell plus inner plexiform layer (GCIPL) thicknesses in non-optic neuritis eyes (end of follow-up) were collected from relapsing MS (RMS) patients with CSF obtained ⩽2 years after MS onset prospectively followed at the Hospital Clinic of Barcelona. We assessed associations between CSF markers and MS outcomes using multivariable models. RESULTS: A total of 89 patients (71 females; median 32.9 years of age) followed over a median of 9.6 years were included. OCMB were associated with a 33% increase in the annualized relapse rate (ARR; p = 0.06), higher odds for high-efficacy DMDs use (OR = 4.8; 95% CI = (1.5, 16.1)), thinner pRNFL (ß = -4.4; 95% CI = (-8.6, -0.2)) and GCIPL (ß = -2.9; 95% CI = (-5.9, +0.05)), and higher rates to EDSS ⩾ 3.0 (HR = 4.4; 95% CI = (1.6, 11.8)) and EDSS ⩾ 4.0 (HR = 5.4; 95% CI = (1.1, 27.1)). No overall associations were found for other CSF markers. CONCLUSION: The presence of OCMB was associated with unfavorable long-term outcomes. OCMB should be determined in RMS to inform long-term prognosis.


Asunto(s)
Esclerosis Múltiple , Bandas Oligoclonales , Ceguera , Niño , Femenino , Humanos , Recurrencia , Retina
10.
BMC Med Imaging ; 21(1): 107, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238246

RESUMEN

BACKGROUND: To develop a regression neural network for the reconstruction of lesion probability maps on Magnetic Resonance Fingerprinting using echo-planar imaging (MRF-EPI) in addition to [Formula: see text], [Formula: see text], NAWM, and GM- probability maps. METHODS: We performed MRF-EPI measurements in 42 patients with multiple sclerosis and 6 healthy volunteers along two sites. A U-net was trained to reconstruct the denoised and distortion corrected [Formula: see text] and [Formula: see text] maps, and to additionally generate NAWM-, GM-, and WM lesion probability maps. RESULTS: WM lesions were predicted with a dice coefficient of [Formula: see text] and a lesion detection rate of [Formula: see text] for a threshold of 33%. The network jointly enabled accurate [Formula: see text] and [Formula: see text] times with relative deviations of 5.2% and 5.1% and average dice coefficients of [Formula: see text] and [Formula: see text] for NAWM and GM after binarizing with a threshold of 80%. CONCLUSION: DL is a promising tool for the prediction of lesion probability maps in a fraction of time. These might be of clinical interest for the WM lesion analysis in MS patients.


Asunto(s)
Aprendizaje Profundo , Imagen Eco-Planar , Esclerosis Múltiple/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Mapeo Encefálico , Humanos , Leucoencefalopatías/diagnóstico por imagen , Redes Neurales de la Computación , Probabilidad
11.
Neuroimage ; 188: 794-806, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30472372

RESUMEN

The default-mode network (DMN) is affected by advancing age, where particularly long-range connectivity has been consistently reported to be reduced as compared to young individuals. We examined whether there were any differences in the effects of intermittent theta-burst stimulation (iTBS) in DMN connectivity between younger and older adults, its associations with cognition and brain integrity, as well as with long-term cognitive status. Twenty-four younger and 27 cognitively normal older adults were randomly assigned to receive real or sham iTBS over the left inferior parietal lobule between two resting-state functional magnetic resonance imaging (rs-fMRI) acquisitions. Three years later, those older adults who had received real iTBS underwent a cognitive follow-up assessment. Among the younger adults, functional connectivity increased following iTBS in distal DMN areas from the stimulation site. In contrast, older adults exhibited increases in connectivity following iTBS in proximal DMN regions. Moreover, older adults with functional responses to iTBS resembling those of the younger participants exhibited greater brain integrity and higher cognitive performance at baseline and at the 3-year follow-up, along with less cognitive decline. Finally, we observed that 'young-like' functional responses to iTBS were also related to the educational background attained amongst older adults. The present study reveals that functional responses of the DMN to iTBS are modulated by age. Furthermore, combining iTBS and rs-fMRI in older adults may allow characterizing distinctive cognitive profiles in aging and its progression, probably reflecting network plasticity systems that may entail a neurobiological substrate of cognitive reserve.


Asunto(s)
Envejecimiento/fisiología , Corteza Cerebral/fisiología , Reserva Cognitiva/fisiología , Conectoma , Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal , Adulto , Factores de Edad , Anciano , Corteza Cerebral/diagnóstico por imagen , Escolaridad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
12.
Mult Scler ; 25(6): 801-810, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29683371

RESUMEN

BACKGROUND: We used graph theoretical analysis to quantify structural connectivity of the hippocampal-related episodic memory network and its association with memory performance in multiple sclerosis (MS) patients. METHODS: Brain diffusion and T1-weighted sequences were obtained from 71 MS patients and 50 healthy controls (HCs). A total of 30 gray matter regions (selected a priori) were used as seeds to perform probabilistic tractography and create connectivity matrices. Global, nodal, and edge graph theoretical properties were calculated. In patients, verbal and visuospatial memory was assessed. RESULTS: MS patients showed decreased network strength, assortativity, transitivity, global efficiency, and increased average path length. Several nodes had decreased strength and communicability in patients, whereas insula and left temporo-occipital cortex increased communicability. Patients had widespread decreased streamline count (SC) and communicability of edges, although a few ones increased their connectivity. Worse memory performance was associated with reduced network efficiency, decreased right hippocampus strength, and reduced SC and communicability of edges related to medial temporal lobe, thalamus, insula, and occipital cortex. CONCLUSION: Impaired structural connectivity occurs in the hippocampal-related memory network, decreasing the efficiency of information transmission. Network connectivity measures correlate with episodic memory, supporting the relevance of structural integrity in preserving memory processes in MS.


Asunto(s)
Hipocampo/patología , Memoria Episódica , Esclerosis Múltiple/patología , Red Nerviosa/patología , Adulto , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen
13.
J Neurol ; 271(3): 1133-1149, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38133801

RESUMEN

BACKGROUND: Multiple sclerosis patients would benefit from machine learning algorithms that integrates clinical, imaging and multimodal biomarkers to define the risk of disease activity. METHODS: We have analysed a prospective multi-centric cohort of 322 MS patients and 98 healthy controls from four MS centres, collecting disability scales at baseline and 2 years later. Imaging data included brain MRI and optical coherence tomography, and omics included genotyping, cytomics and phosphoproteomic data from peripheral blood mononuclear cells. Predictors of clinical outcomes were searched using Random Forest algorithms. Assessment of the algorithm performance was conducted in an independent prospective cohort of 271 MS patients from a single centre. RESULTS: We found algorithms for predicting confirmed disability accumulation for the different scales, no evidence of disease activity (NEDA), onset of immunotherapy and the escalation from low- to high-efficacy therapy with intermediate to high-accuracy. This accuracy was achieved for most of the predictors using clinical data alone or in combination with imaging data. Still, in some cases, the addition of omics data slightly increased algorithm performance. Accuracies were comparable in both cohorts. CONCLUSION: Combining clinical, imaging and omics data with machine learning helps identify MS patients at risk of disability worsening.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/terapia , Estudios Prospectivos , Leucocitos Mononucleares , Imagen por Resonancia Magnética/métodos , Gravedad del Paciente , Aprendizaje Automático
14.
Neuroimage Clin ; 40: 103528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37837891

RESUMEN

T2-hyperintense lesions are the key imaging marker of multiple sclerosis (MS). Previous studies have shown that the white matter surrounding such lesions is often also affected by MS. Our aim was to develop a new method to visualize and quantify the extent of white matter tissue changes in MS based on relaxometry properties. We applied a fast, multi-parametric quantitative MRI approach and used a multi-component MR Fingerprinting (MC-MRF) analysis. We assessed the differences in the MRF component representing prolongedrelaxation time between patients with MS and controls and studied the relation between this component's volume and structural white matter damage identified on FLAIR MRI scans in patients with MS. A total of 48 MS patients at two different sites and 12 healthy controls were scanned with FLAIR and MRF-EPI MRI scans. MRF scans were analyzed with a joint-sparsity multi-component analysis to obtain magnetization fraction maps of different components, representing tissues such as myelin water, white matter, gray matter and cerebrospinal fluid. In the MS patients, an additional component was identified with increased transverse relaxation times compared to the white matter, likely representing changes in free water content. Patients with MS had a higher volume of the long- component in the white matter of the brain compared to healthy controls (B (95%-CI) = 0.004 (0.0006-0.008), p = 0.02). Furthermore, this MRF component had a moderate correlation (correlation coefficient R 0.47) with visible structural white matter changes on the FLAIR scans. Also, the component was found to be more extensive compared to structural white matter changes in 73% of MS patients. In conclusion, our MRF acquisition and analysis captured white matter tissue changes in MS patients compared to controls. In patients these tissue changes were more extensive compared to visually detectable white matter changes on FLAIR scans. Our method provides a novel way to quantify the extent of white matter changes in MS patients, which is underestimated using only conventional clinical MRI scans.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Agua
15.
Artículo en Inglés | MEDLINE | ID: mdl-37679040

RESUMEN

BACKGROUND AND OBJECTIVE: In people with multiple sclerosis (pwMS), concern for potential disease exacerbation or triggering of other autoimmune disorders contributes to vaccine hesitancy. We assessed the humoral and T-cell responses to SARS-CoV-2 after mRNA vaccination, changes in disease activity, and development of antibodies against central or peripheral nervous system antigens. METHODS: This was a prospective 1-year longitudinal observational study of pwMS and a control group of patients with other inflammatory neurologic disorders (OIND) who received an mRNA vaccine. Blood samples were obtained before the first dose (T1), 1 month after the first dose (T2), 1 month after the second dose (T3), and 6 (T4), 9 (T5), and 12 (T6) months after the first dose. Patients were assessed for the immune-specific response, annualized relapse rate (ARR), and antibodies to onconeuronal, neural surface, glial, ganglioside, and nodo-paranodal antigens. RESULTS: Among 454 patients studied, 390 had MS (22 adolescents) and 64 OIND; the mean (SD) age was 44 (14) years; 315 (69%) were female; and 392 (87%) were on disease-modifying therapies. Antibodies to the receptor-binding domain were detected in 367 (86%) patients at T3 and 276 (83%) at T4. After a third dose, only 13 (22%) of 60 seronegative patients seroconverted, and 255 (92%) remained seropositive at T6. Cellular responses were present in 381 (93%) patients at T3 and in 235 (91%) patients at T6 including all those receiving anti-CD20 therapies and in 79% of patients receiving fingolimod. At T3 (429 patients) or T6 (395 patients), none of the patients had developed CNS autoantibodies. Seven patients had neural antibodies that were already present before immunization (3 adult patients with MS had MOG-IgG, 2 with MG and 1 with MS had neuronal cell surface antibodies [unknown antigen], and 1 with MS had myelin antibody reactivity [unknown antigen]. Similarly, no antibodies against PNS antigens were identified at T3 (427 patients). ARR was lower in MS and not significantly different in patients with OIND. Although 182 (40%) patients developed SARS-CoV-2 infection, no cases of severe COVID-19 or serious adverse events occurred. DISCUSSION: In this study, mRNA COVID-19 vaccination was safe and did not exacerbate the autoimmune disease nor triggered neural autoantibodies or immune-mediated neurologic disorders. The outcome of patients who developed SARS-CoV-2 infection was favorable.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Esclerosis Múltiple , Adolescente , Adulto , Humanos , Femenino , Masculino , Vacunas contra la COVID-19/efectos adversos , Formación de Anticuerpos , Estudios Prospectivos , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Autoanticuerpos
16.
Acta Neurochir Suppl ; 114: 247-53, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22327703

RESUMEN

AIM: To describe the outcomes and complication rates in 236 patients with idiopathic normal pressure hydrocephalus (INPH) after treatment. PATIENTS AND METHODS: Among a cohort of 257 patients with suspected INPH, 244 were shunted and 236 were followed up at 6 months after shunting (145 men [61.4%] and 91 women [38.6%] with a median age of 75 years). The study protocol of these patients included clinical, radiological, neuropsychological and functional assessment. The decision to shunt patients was based on continuous intracranial pressure monitoring and CSF dynamics studies. A differential low-pressure valve system, always combined with a gravity compensating device, was implanted in 99% of the patients. RESULTS: After shunting, 89.9% of the patients showed clinical improvement (gait improved in 79.3% of patients, sphincter control in 82.4%, and dementia in 63.7%). Two patients (0.8%) died. Early postsurgical complications were found in 13 of the 244 shunted patients (5.3%). Six months after shunting, the follow-up CT showed asymptomatic hygromas in 8 of the 236 (3.4%). Additional postsurgical complications were found in 7 patients (3%), consisting of 6 subdural hematomas (3 acute and 3 chronic) and 1 distal catheter infection. CONCLUSIONS: Currently, a high percentage of patients with INPH can improve after shunting, with early and late complication rates of less than 12%.


Asunto(s)
Derivaciones del Líquido Cefalorraquídeo/métodos , Hidrocéfalo Normotenso/cirugía , Anciano , Anciano de 80 o más Años , Presión del Líquido Cefalorraquídeo , Cognición , Estudios de Cohortes , Femenino , Humanos , Hidrocéfalo Normotenso/fisiopatología , Locomoción , Masculino , Persona de Mediana Edad , Examen Neurológico , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
17.
Acta Neurochir Suppl ; 114: 221-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22327697

RESUMEN

AIM: Low levels of hypocretin-1 (HC-1) have been associated with hypersomnia, obesity, depression, and chronic headaches. These conditions are frequently present in patients with idiopathic intracranial hypertension (IIH) and may be associated with abnormalities of the hypocretin system. The aim of this study was to determine HC-1 concentrations in cerebrospinal fluid (CSF) in a series of patients with IIH and to compare these concentrations with those in a control group with no neurological alterations. PATIENTS AND METHODS: This prospective study included a cohort of 26 consecutive patients with IIH who were mostly women (25 vs. 1) with a mean age of 42.5 ± 13.2. CSF samples were obtained from a lumbar puncture performed between 08:00 and 10:00 a.m. HC-1 was determined by a competitive radioimmunoassay (RIA) using I(125) as the isotope. Samples of normal CSF were obtained during spinal anesthesia for urological, general or vascular surgery from 40 patients (10 women and 30 men with a mean age of 63.7 ± 14.8) with no previous neurological or psychiatric history, a normal neurological examination, and MMSE scores of ≥ 24. RESULTS: No statistically significant differences were found between HC-1 levels in the CSF of patients with IIH (119.61 ± 21.63 pg/mL) and those of the control group (119.07 ± 20.30 pg/mL; p = 0.918). CONCLUSIONS: HC-1 is not associated with the clinical symptoms present in patients with IIH.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/líquido cefalorraquídeo , Hipertensión Intracraneal/líquido cefalorraquídeo , Neuropéptidos/líquido cefalorraquídeo , Adulto , Anciano , Derivaciones del Líquido Cefalorraquídeo/métodos , Estudios de Cohortes , Femenino , Humanos , Hipertensión Intracraneal/cirugía , Masculino , Persona de Mediana Edad , Orexinas , Radioinmunoensayo/métodos , Estadísticas no Paramétricas , Adulto Joven
18.
Ann N Y Acad Sci ; 1518(1): 282-298, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36256544

RESUMEN

The consequences of extremely intense long-term exercise for brain health remain unknown. We studied the effects of strenuous exercise on brain structure and function, its dose-response relationship, and mechanisms in a rat model of endurance training. Five-week-old male Wistar rats were assigned to moderate (MOD) or intense (INT) exercise or a sedentary (SED) group for 16 weeks. MOD rats showed the highest motivation and learning capacity in operant conditioning experiments; SED and INT presented similar results. In vivo MRI demonstrated enhanced global and regional connectivity efficiency and clustering as well as a higher cerebral blood flow (CBF) in MOD but not INT rats compared with SED. In the cortex, downregulation of oxidative phosphorylation complex IV and AMPK activation denoted mitochondrial dysfunction in INT rats. An imbalance in cortical antioxidant capacity was found between MOD and INT rats. The MOD group showed the lowest hippocampal brain-derived neurotrophic factor levels. The mRNA and protein levels of inflammatory markers were similar in all groups. In conclusion, strenuous long-term exercise yields a lesser improvement in learning ability than moderate exercise. Blunting of MOD-induced improvements in CBF and connectivity efficiency, accompanied by impaired mitochondrial energetics and, possibly, transient local oxidative stress, may underlie the findings in intensively trained rats.


Asunto(s)
Condicionamiento Físico Animal , Ratas , Animales , Masculino , Ratas Wistar , Condicionamiento Físico Animal/fisiología , Estrés Oxidativo , Antioxidantes , Encéfalo
19.
Netw Neurosci ; 6(3): 916-933, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36605412

RESUMEN

In recent years, research on network analysis applied to MRI data has advanced significantly. However, the majority of the studies are limited to single networks obtained from resting-state fMRI, diffusion MRI, or gray matter probability maps derived from T1 images. Although a limited number of previous studies have combined two of these networks, none have introduced a framework to combine morphological, structural, and functional brain connectivity networks. The aim of this study was to combine the morphological, structural, and functional information, thus defining a new multilayer network perspective. This has proved advantageous when jointly analyzing multiple types of relational data from the same objects simultaneously using graph- mining techniques. The main contribution of this research is the design, development, and validation of a framework that merges these three layers of information into one multilayer network that links and relates the integrity of white matter connections with gray matter probability maps and resting-state fMRI. To validate our framework, several metrics from graph theory are expanded and adapted to our specific domain characteristics. This proof of concept was applied to a cohort of people with multiple sclerosis, and results show that several brain regions with a synchronized connectivity deterioration could be identified.

20.
J Pers Med ; 12(5)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35629165

RESUMEN

Background: The frequency of cognitive impairment (CI) reported in neuromyelitis optica spectrum disorder (NMOSD) is highly variable, and its relationship with demographic and clinical characteristics is poorly understood. We aimed to describe the cognitive profile of NMOSD patients, and to analyse the cognitive differences according to their serostatus; furthermore, we aimed to assess the relationship between cognition, demographic and clinical characteristics, and other aspects linked to health-related quality of life (HRQoL). Methods: This cross-sectional study included 41 patients (median age, 44 years; 85% women) from 13 Spanish centres. Demographic and clinical characteristics were collected along with a cognitive z-score (Rao's Battery) and HRQoL patient-centred measures, and their relationship was explored using linear regression. We used the Akaike information criterion to model which characteristics were associated with cognition. Results: Fourteen patients (34%) had CI, and the most affected cognitive domain was visual memory. Cognition was similar in AQP4-IgG-positive and -negative patients. Gender, mood, fatigue, satisfaction with life, and perception of stigma were associated with cognitive performance (adjusted R2 = 0.396, p < 0.001). Conclusions: The results highlight the presence of CI and its impact on HRQoL in NMOSD patients. Cognitive and psychological assessments may be crucial to achieve a holistic approach in patient care.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA