Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(7): 1708-1720, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27264604

RESUMEN

In the mammalian intestine, crypts of Leiberkühn house intestinal epithelial stem/progenitor cells at their base. The mammalian intestine also harbors a diverse array of microbial metabolite compounds that potentially modulate stem/progenitor cell activity. Unbiased screening identified butyrate, a prominent bacterial metabolite, as a potent inhibitor of intestinal stem/progenitor proliferation at physiologic concentrations. During homeostasis, differentiated colonocytes metabolized butyrate likely preventing it from reaching proliferating epithelial stem/progenitor cells within the crypt. Exposure of stem/progenitor cells in vivo to butyrate through either mucosal injury or application to a naturally crypt-less host organism led to inhibition of proliferation and delayed wound repair. The mechanism of butyrate action depended on the transcription factor Foxo3. Our findings indicate that mammalian crypt architecture protects stem/progenitor cell proliferation in part through a metabolic barrier formed by differentiated colonocytes that consume butyrate and stimulate future studies on the interplay of host anatomy and microbiome metabolism.


Asunto(s)
Bacterias/metabolismo , Butiratos/metabolismo , Colon/citología , Colon/microbiología , Microbioma Gastrointestinal , Células Madre/metabolismo , Acil-CoA Deshidrogenasa/deficiencia , Acil-CoA Deshidrogenasa/genética , Animales , Proliferación Celular , Intestino Delgado/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oxidación-Reducción , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Células Madre/citología , Pez Cebra
2.
Nature ; 614(7949): 742-751, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755098

RESUMEN

Cell identity is governed by the complex regulation of gene expression, represented as gene-regulatory networks1. Here we use gene-regulatory networks inferred from single-cell multi-omics data to perform in silico transcription factor perturbations, simulating the consequent changes in cell identity using only unperturbed wild-type data. We apply this machine-learning-based approach, CellOracle, to well-established paradigms-mouse and human haematopoiesis, and zebrafish embryogenesis-and we correctly model reported changes in phenotype that occur as a result of transcription factor perturbation. Through systematic in silico transcription factor perturbation in the developing zebrafish, we simulate and experimentally validate a previously unreported phenotype that results from the loss of noto, an established notochord regulator. Furthermore, we identify an axial mesoderm regulator, lhx1a. Together, these results show that CellOracle can be used to analyse the regulation of cell identity by transcription factors, and can provide mechanistic insights into development and differentiation.


Asunto(s)
Diferenciación Celular , Simulación por Computador , Redes Reguladoras de Genes , Factores de Transcripción , Animales , Humanos , Ratones , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Fenotipo , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Mesodermo/enzimología , Mesodermo/metabolismo , Hematopoyesis/genética
4.
Development ; 148(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913466

RESUMEN

In the 1990s, labs on both sides of the Atlantic performed the largest genetic mutagenesis screen at that time using an emerging model organism: the zebrafish. Led by Christiane Nüsslein-Volhard in Tübingen, Germany, and Wolfgang Driever in Boston, USA, these colossal screens culminated in 1996 with the publication of 37 articles in a special issue of Development, which remains the journal's largest issue to this day. To celebrate the anniversary of the zebrafish issue and reflect on the 25 years since its publication, five zebrafish researchers share what the issue means to them, how it has contributed to their career and its impact on the zebrafish community.


Asunto(s)
Modelos Animales , Mutagénesis/genética , Pez Cebra/genética , Animales , Humanos
5.
Dev Biol ; 481: 148-159, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599906

RESUMEN

Cell migration is important during early animal embryogenesis. Cell migration and cell shape are controlled by actin assembly and dynamics, which depend on capping proteins, including the barbed-end heterodimeric actin capping protein (CP). CP activity can be regulated by capping-protein-interacting (CPI) motif proteins, including CARMIL (capping protein Arp2/3 myosin-I linker) family proteins. Previous studies of CARMIL3, one of the three highly conserved CARMIL genes in vertebrates, have largely been limited to cells in culture. Towards understanding CARMIL function during embryogenesis in vivo, we analyzed zebrafish lines carrying mutations of carmil3. Maternal-zygotic mutants showed impaired endodermal migration during gastrulation, along with defects in dorsal forerunner cell (DFC) cluster formation, which affected the morphogenesis of Kupffer's vesicle (KV). Mutant KVs were smaller, contained fewer cells and displayed decreased numbers of cilia, leading to defects in left/right (L/R) patterning with variable penetrance and expressivity. The penetrance and expressivity of the KV phenotype in carmil3 mutants correlated well with the L/R heart positioning defect at the end of embryogenesis. This in vivo animal study of CARMIL3 reveals its new role during morphogenesis of the vertebrate embryo. This role involves migration of endodermal cells and DFCs, along with subsequent morphogenesis of the KV and L/R asymmetry.


Asunto(s)
Tipificación del Cuerpo , Movimiento Celular , Embrión no Mamífero/embriología , Desarrollo Embrionario , Proteínas de Microfilamentos/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proteínas de Microfilamentos/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
Dev Biol ; 471: 18-33, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33290818

RESUMEN

The spine gives structural support for the adult body, protects the spinal cord, and provides muscle attachment for moving through the environment. The development and maturation of the spine and its physiology involve the integration of multiple musculoskeletal tissues including bone, cartilage, and fibrocartilaginous joints, as well as innervation and control by the nervous system. One of the most common disorders of the spine in human is adolescent idiopathic scoliosis (AIS), which is characterized by the onset of an abnormal lateral curvature of the spine of <10° around adolescence, in otherwise healthy children. The genetic basis of AIS is largely unknown. Systematic genome-wide mutagenesis screens for embryonic phenotypes in zebrafish have been instrumental in the understanding of early patterning of embryonic tissues necessary to build and pattern the embryonic spine. However, the mechanisms required for postembryonic maturation and homeostasis of the spine remain poorly understood. Here we report the results from a small-scale forward genetic screen for adult-viable recessive and dominant zebrafish mutations, leading to overt morphological abnormalities of the adult spine. Germline mutations induced with N-ethyl N-nitrosourea (ENU) were transmitted and screened for dominant phenotypes in 1229 F1 animals, and subsequently bred to homozygosity in F3 families; from these, 314 haploid genomes were screened for adult-viable recessive phenotypes affecting general body shape. We cumulatively found 40 adult-viable (3 dominant and 37 recessive) mutations each leading to a defect in the morphogenesis of the spine. The largest phenotypic group displayed larval onset axial curvatures, leading to whole-body scoliosis without vertebral dysplasia in adult fish. Pairwise complementation testing of 16 mutant lines within this phenotypic group revealed at least 9 independent mutant loci. Using massively-parallel whole genome or whole exome sequencing and meiotic mapping we defined the molecular identity of several loci for larval onset whole-body scoliosis in zebrafish. We identified a new mutation in the skolios/kinesin family member 6 (kif6) gene, causing neurodevelopmental and ependymal cilia defects in mouse and zebrafish. We also report multiple recessive alleles of the scospondin and a disintegrin and metalloproteinase with thrombospondin motifs 9 (adamts9) genes, which all display defects in spine morphogenesis. Our results provide evidence of monogenic traits that are essential for normal spine development in zebrafish, that may help to establish new candidate risk loci for spine disorders in humans.


Asunto(s)
Mutación de Línea Germinal , Columna Vertebral/crecimiento & desarrollo , Proteínas de Pez Cebra , Pez Cebra , Animales , Embrión no Mamífero/embriología , Genoma , Humanos , Neurogénesis/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
PLoS Genet ; 13(2): e1006564, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28222105

RESUMEN

Cell proliferation has generally been considered dispensable for anteroposterior extension of embryonic axis during vertebrate gastrulation. Signal transducer and activator of transcription 3 (Stat3), a conserved controller of cell proliferation, survival and regeneration, is associated with human scoliosis, cancer and Hyper IgE Syndrome. Zebrafish Stat3 was proposed to govern convergence and extension gastrulation movements in part by promoting Wnt/Planar Cell Polarity (PCP) signaling, a conserved regulator of mediolaterally polarized cell behaviors. Here, using zebrafish stat3 null mutants and pharmacological tools, we demonstrate that cell proliferation contributes to anteroposterior embryonic axis extension. Zebrafish embryos lacking maternal and zygotic Stat3 expression exhibit normal convergence movements and planar cell polarity signaling, but transient axis elongation defect due to insufficient number of cells resulting largely from reduced cell proliferation and increased apoptosis. Pharmacologic inhibition of cell proliferation during gastrulation phenocopied axis elongation defects. Stat3 regulates cell proliferation and axis extension in part via upregulation of Cdc25a expression during oogenesis. Accordingly, restoring Cdc25a expression in stat3 mutants partially suppressed cell proliferation and gastrulation defects. During later development, stat3 mutant zebrafish exhibit stunted growth, scoliosis, excessive inflammation, and fail to thrive, affording a genetic tool to study Stat3 function in vertebrate development, regeneration, and disease.


Asunto(s)
Proliferación Celular/genética , Desarrollo Embrionario/genética , Factor de Transcripción STAT3/genética , Proteínas de Pez Cebra/genética , Fosfatasas cdc25/genética , Animales , Polaridad Celular/genética , Gástrula/crecimiento & desarrollo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Morfogénesis/genética , Proteínas Mutantes/genética , Factor de Transcripción STAT3/biosíntesis , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/biosíntesis , Fosfatasas cdc25/biosíntesis
8.
Dev Biol ; 430(2): 385-396, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28322738

RESUMEN

Intracellular Ca2+ signaling regulates cellular activities during embryogenesis and in adult organisms. We generated stable Tg[ßactin2:GCaMP6s]stl351 and Tg[ubi:GCaMP6s]stl352 transgenic lines that combine the ubiquitously-expressed Ca2+ indicator GCaMP6s with the transparent characteristics of zebrafish embryos to achieve superior in vivo Ca2+ imaging. Using the Tg[ßactin2:GCaMP6s]stl351 line featuring strong GCaMP6s expression from cleavage through gastrula stages, we detected higher frequency of Ca2+ transients in the superficial blastomeres during the blastula stages preceding the midblastula transition. Additionally, GCaMP6s also revealed that dorsal-biased Ca2+ signaling that follows the midblastula transition persisted longer during gastrulation, compared with earlier studies. We observed that dorsal-biased Ca2+ signaling is diminished in ventralized ichabod/ß-catenin2 mutant embryos and ectopically induced in embryos dorsalized by excess ß-catenin. During gastrulation, we directly visualized Ca2+ signaling in the dorsal forerunner cells, which form in a Nodal signaling dependent manner and later give rise to the laterality organ. We found that excess Nodal increases the number and the duration of Ca2+ transients specifically in the dorsal forerunner cells. The GCaMP6s transgenic lines described here enable unprecedented visualization of dynamic Ca2+ events from embryogenesis through adulthood, augmenting the zebrafish toolbox.


Asunto(s)
Blastómeros/metabolismo , Señalización del Calcio/fisiología , Calcio/análisis , Proteínas Recombinantes de Fusión/análisis , Pez Cebra/embriología , Actinas/genética , Animales , Animales Modificados Genéticamente , Blastómeros/química , Blastómeros/ultraestructura , Blástula/química , Blástula/ultraestructura , Tipificación del Cuerpo , Calmodulina/genética , Embrión no Mamífero/química , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Fragmentos de Péptidos/genética , Péptidos/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ubiquitina/genética
9.
Development ; 142(14): 2508-20, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26062934

RESUMEN

During vertebrate gastrulation, convergence and extension movements elongate embryonic tissues anteroposteriorly and narrow them mediolaterally. Planar cell polarity (PCP) signaling is essential for mediolateral cell elongation underlying these movements, but how this polarity arises is poorly understood. We analyzed the elongation, orientation and migration behaviors of lateral mesodermal cells undergoing convergence and extension movements in wild-type zebrafish embryos and mutants for the Wnt/PCP core component Vangl2 (Trilobite). We demonstrate that Vangl2 function is required at the time when cells transition to a highly elongated and mediolaterally aligned body. vangl2 mutant cells fail to undergo this transition and to migrate along a straight path with high net speed towards the dorsal midline. Instead, vangl2 mutant cells exhibit an anterior/animal pole bias in cell body alignment and movement direction, suggesting that PCP signaling promotes effective dorsal migration in part by suppressing anterior/animalward cell polarity and movement. Endogenous Vangl2 protein accumulates at the plasma membrane of mesenchymal converging cells at the time its function is required for mediolaterally polarized cell behavior. Heterochronic cell transplantations demonstrated that Vangl2 cell membrane accumulation is stage dependent and regulated by both intrinsic factors and an extracellular signal, which is distinct from PCP signaling or other gastrulation regulators, including BMP and Nodals. Moreover, mosaic expression of fusion proteins revealed enrichment of Vangl2 at the anterior cell edges of highly mediolaterally elongated cells. These results demonstrate that the dynamic Vangl2 intracellular distribution is coordinated with and necessary for the changes in convergence and extension cell behaviors during gastrulation.


Asunto(s)
Gástrula/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Tipificación del Cuerpo , Linaje de la Célula , Membrana Celular/metabolismo , Movimiento Celular , Polaridad Celular/fisiología , Citoplasma/metabolismo , Embrión no Mamífero/metabolismo , Femenino , Gastrulación , Proteínas de la Membrana/metabolismo , Mesodermo/metabolismo , Mutación , Placa Neural/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
10.
Development ; 142(15): 2704-18, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26160902

RESUMEN

Dachsous (Dchs), an atypical cadherin, is an evolutionarily conserved regulator of planar cell polarity, tissue size and cell adhesion. In humans, DCHS1 mutations cause pleiotropic Van Maldergem syndrome. Here, we report that mutations in zebrafish dchs1b and dchs2 disrupt several aspects of embryogenesis, including gastrulation. Unexpectedly, maternal zygotic (MZ) dchs1b mutants show defects in the earliest developmental stage, egg activation, including abnormal cortical granule exocytosis (CGE), cytoplasmic segregation, cleavages and maternal mRNA translocation, in transcriptionally quiescent embryos. Later, MZdchs1b mutants exhibit altered dorsal organizer and mesendodermal gene expression, due to impaired dorsal determinant transport and Nodal signaling. Mechanistically, MZdchs1b phenotypes can be explained in part by defective actin or microtubule networks, which appear bundled in mutants. Accordingly, disruption of actin cytoskeleton in wild-type embryos phenocopied MZdchs1b mutant defects in cytoplasmic segregation and CGE, whereas interfering with microtubules in wild-type embryos impaired dorsal organizer and mesodermal gene expression without perceptible earlier phenotypes. Moreover, the bundled microtubule phenotype was partially rescued by expressing either full-length Dchs1b or its intracellular domain, suggesting that Dchs1b affects microtubules and some developmental processes independent of its known ligand Fat. Our results indicate novel roles for vertebrate Dchs in actin and microtubule cytoskeleton regulation in the unanticipated context of the single-celled embryo.


Asunto(s)
Actinas/metabolismo , Cadherinas/metabolismo , Citoesqueleto/fisiología , Microtúbulos/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Cadherinas/genética , Cartilla de ADN/genética , Exocitosis/fisiología , Femenino , Inmunohistoquímica , Hibridación in Situ , Microscopía Confocal , Imagen Óptica , Ovario/anatomía & histología , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas de Pez Cebra/genética
11.
Hum Mol Genet ; 24(15): 4365-73, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25954032

RESUMEN

Adolescent idiopathic scoliosis (AIS) and pectus excavatum (PE) are common pediatric musculoskeletal disorders. Little is known about the tissue of origin for either condition, or about their genetic bases. Common variants near GPR126/ADGRG6 (encoding the adhesion G protein-coupled receptor 126/adhesion G protein-coupled receptor G6, hereafter referred to as GPR126) were recently shown to be associated with AIS in humans. Here, we provide genetic evidence that loss of Gpr126 in osteochondroprogenitor cells alters cartilage biology and spinal column development. Microtomographic and x-ray studies revealed several hallmarks of AIS, including postnatal onset of scoliosis without malformations of vertebral units. The mutants also displayed a dorsal-ward deflection of the sternum akin to human PE. At the cellular level, these defects were accompanied by failure of midline fusion within the developing annulus fibrosis of the intervertebral discs and increased apoptosis of chondrocytes in the ribs and vertebrae. Molecularly, we found that loss of Gpr126 upregulated the expression of Gal3st4, a gene implicated in human PE, encoding Galactose-3-O-sulfotransferase 4. Together, these data uncover Gpr126 as a genetic cause for the pathogenesis of AIS and PE in a mouse model.


Asunto(s)
Tórax en Embudo/genética , Receptores Acoplados a Proteínas G/genética , Escoliosis/genética , Sulfotransferasas/genética , Animales , Cartílago , Condrocitos/patología , Modelos Animales de Enfermedad , Tórax en Embudo/patología , Predisposición Genética a la Enfermedad , Humanos , Ratones , Receptores Acoplados a Proteínas G/biosíntesis , Escoliosis/patología , Esternón/patología , Sulfotransferasas/biosíntesis
12.
Development ; 141(19): 3807-18, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25249466

RESUMEN

Custom-designed nucleases afford a powerful reverse genetic tool for direct gene disruption and genome modification in vivo. Among various applications of the nucleases, homologous recombination (HR)-mediated genome editing is particularly useful for inserting heterologous DNA fragments, such as GFP, into a specific genomic locus in a sequence-specific fashion. However, precise HR-mediated genome editing is still technically challenging in zebrafish. Here, we establish a GFP reporter system for measuring the frequency of HR events in live zebrafish embryos. By co-injecting a TALE nuclease and GFP reporter targeting constructs with homology arms of different size, we defined the length of homology arms that increases the recombination efficiency. In addition, we found that the configuration of the targeting construct can be a crucial parameter in determining the efficiency of HR-mediated genome engineering. Implementing these modifications improved the efficiency of zebrafish knock-in generation, with over 10% of the injected F0 animals transmitting gene-targeting events through their germline. We generated two HR-mediated insertion alleles of sox2 and gfap loci that express either superfolder GFP (sfGFP) or tandem dimeric Tomato (tdTomato) in a spatiotemporal pattern that mirrors the endogenous loci. This efficient strategy provides new opportunities not only to monitor expression of endogenous genes and proteins and follow specific cell types in vivo, but it also paves the way for other sophisticated genetic manipulations of the zebrafish genome.


Asunto(s)
Desoxirribonucleasas/metabolismo , Técnicas de Sustitución del Gen/métodos , Ingeniería Genética/métodos , Genoma/genética , Recombinación Homóloga/fisiología , Pez Cebra/genética , Animales , Southern Blotting , Vectores Genéticos/genética , Genotipo , Proteínas Fluorescentes Verdes , Inmunohistoquímica , Hibridación in Situ , Microinyecciones
13.
Development ; 140(20): 4203-13, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24026123

RESUMEN

Establishment of specific characteristics of each embryonic cardiac chamber is crucial for development of a fully functional adult heart. Despite the importance of defining and maintaining unique features in ventricular and atrial cardiomyocytes, the regulatory mechanisms guiding these processes are poorly understood. Here, we show that the homeodomain transcription factors Nkx2.5 and Nkx2.7 are necessary to sustain ventricular chamber attributes through repression of atrial chamber identity. Mutation of nkx2.5 in zebrafish yields embryos with diminutive ventricular and bulbous atrial chambers. These chamber deformities emerge gradually during development, with a severe collapse in the number of ventricular cardiomyocytes and an accumulation of excess atrial cardiomyocytes as the heart matures. Removal of nkx2.7 function from nkx2.5 mutants exacerbates the loss of ventricular cells and the gain of atrial cells. Moreover, in these Nkx-deficient embryos, expression of vmhc, a ventricular gene, fades, whereas expression of amhc, an atrial gene, expands. Cell-labeling experiments suggest that ventricular cardiomyocytes can transform into atrial cardiomyocytes in the absence of Nkx gene function. Through suggestion of transdifferentiation from ventricular to atrial fate, our data reveal a pivotal role for Nkx genes in maintaining ventricular identity and highlight remarkable plasticity in differentiated myocardium. Thus, our results are relevant to the etiologies of fetal and neonatal cardiac pathology and could direct future innovations in cardiac regenerative medicine.


Asunto(s)
Atrios Cardíacos/embriología , Ventrículos Cardíacos/embriología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Miosinas Atriales/biosíntesis , Diferenciación Celular , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Genotipo , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Mutación , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Miosinas Ventriculares/biosíntesis , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
14.
Development ; 140(14): 3028-39, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23821037

RESUMEN

During vertebrate gastrulation, Wnt/planar cell polarity (PCP) signaling orchestrates polarized cell behaviors underlying convergence and extension (C&E) movements to narrow embryonic tissues mediolaterally and lengthen them anteroposteriorly. Here, we have identified Gpr125, an adhesion G protein-coupled receptor, as a novel modulator of the Wnt/PCP signaling system. Excess Gpr125 impaired C&E movements and the underlying cell and molecular polarities. Reduced Gpr125 function exacerbated the C&E and facial branchiomotor neuron (FBMN) migration defects of embryos with reduced Wnt/PCP signaling. At the molecular level, Gpr125 recruited Dishevelled to the cell membrane, a prerequisite for Wnt/PCP activation. Moreover, Gpr125 and Dvl mutually clustered one another to form discrete membrane subdomains, and the Gpr125 intracellular domain directly interacted with Dvl in pull-down assays. Intriguingly, Dvl and Gpr125 were able to recruit a subset of PCP components into membrane subdomains, suggesting that Gpr125 may modulate the composition of Wnt/PCP membrane complexes. Our study reveals a role for Gpr125 in PCP-mediated processes and provides mechanistic insight into Wnt/PCP signaling.


Asunto(s)
Movimiento Celular , Polaridad Celular , Receptores Acoplados a Proteínas G/metabolismo , Vía de Señalización Wnt , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Dishevelled , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Mutación , Fosfoproteínas/metabolismo , Receptores Acoplados a Proteínas G/genética , Alas de Animales/citología , Alas de Animales/embriología , Proteínas de Pez Cebra/genética
15.
Nat Genet ; 39(2): 259-63, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17220889

RESUMEN

Numerous microRNAs (miRNAs) have been discovered in the genomes of higher eukaryotes, and functional studies indicate that they are important during development. However, little is known concerning the function of individual miRNAs. We approached this problem in zebrafish by combining identification of miRNA expression, functional analyses and experimental validation of potential targets. We show that miR-214 is expressed during early segmentation stages in somites and that varying its expression alters the expression of genes regulated by Hedgehog signaling. Inhibition of miR-214 results in a reduction or loss of slow-muscle cell types. We show that su(fu) mRNA, encoding a negative regulator of Hedgehog signaling, is targeted by miR-214. Through regulation of su(fu), miR-214 enables precise specification of muscle cell types by sharpening cellular responses to Hedgehog.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , MicroARNs/fisiología , Músculos/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Somitos/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Diferenciación Celular , Embrión no Mamífero , Morfogénesis , Músculos/fisiología , Somitos/fisiología , Pez Cebra/embriología
16.
Dev Biol ; 386(1): 72-85, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24333517

RESUMEN

Congenital vertebral malformations (CVM) occur in 1 in 1000 live births and in many cases can cause spinal deformities, such as scoliosis, and result in disability and distress of affected individuals. Many severe forms of the disease, such as spondylocostal dystostosis, are recessive monogenic traits affecting somitogenesis, however the etiologies of the majority of CVM cases remain undetermined. Here we demonstrate that morphological defects of the notochord in zebrafish can generate congenital-type spine defects. We characterize three recessive zebrafish leviathan/col8a1a mutant alleles ((m531, vu41, vu105)) that disrupt collagen type VIII alpha1a (col8a1a), and cause folding of the embryonic notochord and consequently adult vertebral column malformations. Furthermore, we provide evidence that a transient loss of col8a1a function or inhibition of Lysyl oxidases with drugs during embryogenesis was sufficient to generate vertebral fusions and scoliosis in the adult spine. Using periodic imaging of individual zebrafish, we correlate focal notochord defects of the embryo with vertebral malformations (VM) in the adult. Finally, we show that bends and kinks in the notochord can lead to aberrant apposition of osteoblasts normally confined to well-segmented areas of the developing vertebral bodies. Our results afford a novel mechanism for the formation of VM, independent of defects of somitogenesis, resulting from aberrant bone deposition at regions of misshapen notochord tissue.


Asunto(s)
Colágeno Tipo VIII/fisiología , Regulación del Desarrollo de la Expresión Génica , Columna Vertebral/anomalías , Pez Cebra/embriología , Alelos , Animales , Colágeno Tipo VIII/genética , Cruzamientos Genéticos , Hibridación in Situ , Meiosis , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutación , Notocorda/anomalías , Osteoblastos/citología , Osteoblastos/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Factores de Tiempo , Pez Cebra/genética
17.
Development ; 139(14): 2614-24, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22736245

RESUMEN

Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/ß-catenin pathway.


Asunto(s)
Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Telencéfalo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteína Homeobox SIX3
18.
PLoS Biol ; 10(10): e1001403, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23055828

RESUMEN

Embryonic axis formation in vertebrates is initiated by the establishment of the dorsal Nieuwkoop blastula organizer, marked by the nuclear accumulation of maternal ß-catenin, a transcriptional effector of canonical Wnt signaling. Known regulators of axis specification include the canonical Wnt pathway components that positively or negatively affect ß-catenin. An involvement of G-protein coupled receptors (GPCRs) was hypothesized from experiments implicating G proteins and intracellular calcium in axis formation, but such GPCRs have not been identified. Mobilization of intracellular Ca(2+) stores generates Ca(2+) transients in the superficial blastomeres of zebrafish blastulae when the nuclear accumulation of maternal ß-catenin marks the formation of the Nieuwkoop organizer. Moreover, intracellular Ca(2+) downstream of non-canonical Wnt ligands was proposed to inhibit ß-catenin and axis formation, but mechanisms remain unclear. Here we report a novel function of Ccr7 GPCR and its chemokine ligand Ccl19.1, previously implicated in chemotaxis and other responses of dendritic cells in mammals, as negative regulators of ß-catenin and axis formation in zebrafish. We show that interference with the maternally and ubiquitously expressed zebrafish Ccr7 or Ccl19.1 expands the blastula organizer and the dorsoanterior tissues at the expense of the ventroposterior ones. Conversely, Ccr7 or Ccl19.1 overexpression limits axis formation. Epistatic analyses demonstrate that Ccr7 acts downstream of Ccl19.1 ligand and upstream of ß-catenin transcriptional targets. Moreover, Ccl19/Ccr7 signaling reduces the level and nuclear accumulation of maternal ß-catenin and its axis-inducing activity and can also inhibit the Gsk3ß -insensitive form of ß-catenin. Mutational and pharmacologic experiments reveal that Ccr7 functions during axis formation as a GPCR to inhibit ß-catenin, likely by promoting Ca(2+) transients throughout the blastula. Our study delineates a novel negative, Gsk3ß-independent control mechanism of ß-catenin and implicates Ccr7 as a long-hypothesized GPCR regulating vertebrate axis formation.


Asunto(s)
Receptores CCR7/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , beta Catenina/antagonistas & inhibidores , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Receptores CCR7/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , beta Catenina/genética , beta Catenina/metabolismo
19.
Development ; 138(2): 291-302, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21177342

RESUMEN

Progression through the cell cycle relies on oscillation of cyclin-dependent kinase (Cdk) activity. One mechanism for downregulating Cdk signaling is to activate opposing phosphatases. The Cdc14 family of phosphatases counteracts Cdk1 phosphorylation in diverse organisms to allow proper exit from mitosis and cytokinesis. However, the role of the vertebrate CDC14 phosphatases, CDC14A and CDC14B, in re-setting the cell for interphase remains unclear. To understand Cdc14 function in vertebrates, we cloned the zebrafish cdc14b gene and used antisense morpholino oligonucleotides and an insertional mutation to inhibit its function during early development. Loss of Cdc14B function led to an array of phenotypes, including hydrocephaly, curved body, kidney cysts and left-right asymmetry defects, reminiscent of zebrafish mutants with defective cilia. Indeed, we report that motile and primary cilia were shorter in cdc14b-deficient embryos. We also demonstrate that Cdc14B function in ciliogenesis requires its phosphatase activity and can be dissociated from its function in cell cycle control. Finally, we propose that Cdc14B plays a role in the regulation of cilia length in a pathway independent of fibroblast growth factor (FGF). This first study of a loss of function of a Cdc14 family member in a vertebrate organism reveals a new role for Cdc14B in ciliogenesis and consequently in a number of developmental processes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cilios/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Proteínas de Ciclo Celular/genética , División Celular , Cilios/genética , Cilios/ultraestructura , Clonación Molecular , Fosfatasas de Especificidad Dual/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Datos de Secuencia Molecular , Mutagénesis Insercional , Oligodesoxirribonucleótidos Antisentido/genética , Homología de Secuencia de Aminoácido , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA