Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(6): 3773-3784, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38301281

RESUMEN

A longstanding challenge in catalysis by noble metals has been to understand the origin of enhancements of rates of hydrogen transfer that result from the bonding of oxygen near metal sites. We investigated structurally well-defined catalysts consisting of supported tetrairidium carbonyl clusters with single-atom (apical iridium) catalytic sites for ethylene hydrogenation. Reaction of the clusters with ethylene and H2 followed by O2 led to the onset of catalytic activity as a terminal CO ligand at each apical Ir atom was removed and bridging dioxygen ligands replaced CO ligands at neighboring (basal-plane) sites. The presence of the dioxygen ligands caused a 6-fold increase in the catalytic reaction rate, which is explained by the electron-withdrawing capability induced by the bridging dioxygen ligands, consistent with the inference that reductive elimination is rate-determining. Electronic-structure calculations demonstrate an additional role of the dioxygen ligands, changing the mechanism of hydrogen transfer from one involving equatorial hydride ligands to that involving bridging hydride ligands. This mechanism is made evident by an inverse kinetic isotope effect observed in ethylene hydrogenation reactions with H2 and, alternatively, with D2 on the cluster incorporating the dioxygen ligands and is a consequence of quasi-equilibrated hydrogen transfer in this catalyst. The same mechanism accounts for rate enhancements induced by the bridging dioxygen ligands for the catalytic reaction of H2 with D2 to give HD. We posit that the mechanism involving bridging hydride ligands facilitated by oxygen ligands remote from the catalytic site may have some generality in catalysis by oxide-supported noble metals.

2.
Angew Chem Int Ed Engl ; 60(18): 10239-10246, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33522703

RESUMEN

We investigate the interaction between a molecule and a pore mouth-a critical step in adsorption processes-by characterizing the conformation of a macrocyclic calix[4]arene-TiIV complex, which is grafted on the external surface of a zeotype (*-SVY). X-ray absorption and 13 C{1 H} CPMAS NMR spectroscopies independently detect a unique conformation of this complex when it is grafted at crystallographically equivalent locations that lie at the interface of 7 Šhemispherical microporous cavities and the external surface. Electronic structure calculations support the presence of this unique conformation, and suggest that it is brought about by a specific orientation of the macrocycle that maximizes non-covalent interactions between calix[4]arene upper-rim tert-butyl substituents and the microporous-cavity walls. Our comparative study provides a rare "snapshot" of a molecule partially confined at a pore mouth, an essential intermediate for adsorption into micropores, and demonstrates how surrounding environment controls this confinement in a sensitive fashion.


Asunto(s)
Calixarenos/química , Compuestos Macrocíclicos/química , Compuestos Organometálicos/química , Fenoles/química , Titanio/química , Teoría Funcional de la Densidad , Modelos Moleculares , Estructura Molecular , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
3.
J Am Chem Soc ; 141(9): 4010-4015, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30736668

RESUMEN

Although essentially molecular noble metal species provide active sites and highly tunable platforms for the design of supported catalysts, the susceptibility of the metals to reduction and aggregation and the consequent loss of catalytic activity and selectivity limit opportunities for their application. Here, we demonstrate a new construct to stabilize supported molecular noble-metal catalysts, taking advantage of sterically bulky ligands on the metal that serve as surrogate supports and isolate the active sites under conditions involving steady-state catalytic turnover in a reducing environment. The result is demonstrated with an iridium pair-site catalyst incorporating P-bridging calix[4]arene ligands dispersed on siliceous supports, chosen as prototypes because they offer weakly interacting surfaces on which metal aggregation is prone to occur. This catalyst was used for the hydrogenation of ethylene in a flow reactor. Atomic-resolution imaging of the Ir centers and spectra of the catalyst before and after use show that the metals resisted aggregation and deactivation, remaining atomically dispersed and accessible for catalysis. This strategy thus allows the stabilization of the catalysts even when they are weakly anchored to supports.

4.
J Am Chem Soc ; 140(15): 4956-4960, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29565124

RESUMEN

The effect of outer-sphere environment on alkene epoxidation catalysis using an organic hydroperoxide oxidant is demonstrated for calix[4]arene-TiIV single-sites grafted on amorphous vs crystalline delaminated zeotype (UCB-4) silicates as supports. A chelating calix[4]arene macrocyclic ligand helps enforce a constant TiIV inner-sphere, as characterized by UV-visible and X-ray absorption spectroscopies, thus enabling the rigorous comparison of outer-sphere environments across different siliceous supports. These outer-sphere environments are characterized by solid-state 1H NMR spectroscopy to comprise proximally organized silanols confined within 12 membered-ring cups in crystalline UCB-4, and are responsible for up to 5-fold enhancements in rates of epoxidation by TiIV centers.

5.
J Phys Chem A ; 121(26): 5029-5044, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28598617

RESUMEN

The low-energy isomers of Irx(CO)y(NHC)z (x = 1, 2, 4) are investigated with density functional theory (DFT) and correlated molecular orbital theory at the coupled cluster CCSD(T) level. The structures, relative energies, ligand dissociation energies, and natural charges are calculated. The energies of tetrairidium cluster are predicted at the CAM-B3LYP level that best fit the CCSD(T) results compared with the other four functionals in the benchmark calculations. The NHC's behave as stronger σ donors compared with CO's and have higher ligand dissociation energies (LDEs). For smaller isomers, the increase in the LDEs of the CO's and the decrease in the LDEs of the NHC's as more NHC's are substituted for CO's are due to π-back-bonding and electron repulsion, whereas the trend of how the LDEs change for larger isomers is not obvious. We demonstrate a µ3-CO resulting from the high electron density of the metal centers in these complexes, as the bridging CO's and the µ3-CO's can carry more negative charge and stabilize the isomers. Comparison of calculations for a mixed tetrairidum cluster consisting of two calixarene-phosphine ligands and a single calixarene-NHC ligand in the basal plane demonstrated good agreement in terms of both the ligand substitution symmetry (C3v derived), as well as the infrared spectra. Similar comparisons were also performed between calculations and experiment for novel monosubstituted calixarene-NHC tetrairidium clusters.

6.
J Am Chem Soc ; 129(50): 15585-95, 2007 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18031040

RESUMEN

Cooperativity between Brønsted acidic defect sites on oxide surfaces and Lewis acid catalyst sites consisting of grafted calixarene-Ti(IV) complexes is investigated for controlling epoxidation catalysis. Materials are synthesized that, regardless of the surface or calixarene substituent, demonstrate nearly identical UV-visible ligand-to-metal charge-transfer bands and Ti K-edge X-ray absorption near edge spectral features consistent with site-isolated, coordinatively unsaturated Ti(IV) atoms. Despite similar Ti frontier orbital energies demonstrated by these spectra, replacing a homogeneous triphenylsilanol ligand with a silanol on a SiO2 surface increases cyclohexene epoxidation rates with tert-butyl hydroperoxide 20-fold per Ti site. Supporting calixarene-Ti active sites on fully hydroxylated Al2O3 or TiO2, which possess lower average surface hydroxyl pKa than that of SiO2, reduces catalytic rates 50-fold relative to SiO2. These effects are consistent with SiO2 surfaces balancing two competing factors that control epoxidation rates-equilibrated hydroperoxide binding at Ti, disfavored by stronger surface Brønsted acidity, and rate-limiting oxygen transfer from this intermediate to alkenes, favored by strongly H-bonding intermediates. These observations also imply that Ti-OSi rather than Ti-OCalix bonds are broken upon hydroperoxide binding to Ti in kinetically relevant steps, which is verified by the lack of a calixarene upper-rim substituent effect on epoxidation rate. The pronounced sensitivity of observed epoxidation rates to the support oxide, in the absence of changes to the Ti coordination environment, provides experimental evidence for the importance of outer-sphere H-bonding interactions for the exceptional epoxidation reactivity of titanium silicalite and related catalysts.

7.
Chem Commun (Camb) ; 53(79): 10870-10873, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28875996

RESUMEN

The synthesis of high surface-area colloidal assemblies of calixarene-phosphine-capped nanoporous gold is reported under reductive electrochemical conditions. These materials uniquely exhibit a remarkably thin wall thickness down to 10 nm, while possessing pore sizes on the order of up to hundreds of nanometers, which can be controlled via choice of organic ligand.

8.
Chem Sci ; 8(7): 4951-4960, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28959418

RESUMEN

A closed Ir4 carbonyl cluster, 1, comprising a tetrahedral metal frame and three sterically bulky tert-butyl-calix[4]arene(OPr)3(OCH2PPh2) (Ph = phenyl; Pr = propyl) ligands at the basal plane, was characterized with variable-temperature 13C NMR spectroscopy, which show the absence of scrambling of the CO ligands at temperatures up to 313 K. This demonstration of distinct sites for the CO ligands was found to extend to the reactivity and catalytic properties, as shown by selective decarbonylation in a reaction with trimethylamine N-oxide (TMAO) as an oxidant, which, reacting in the presence of ethylene, leads to the selective bonding of an ethyl ligand at the apical Ir site. These clusters were supported intact on porous silica and found to catalyze ethylene hydrogenation, and a comparison of the kinetics of the single-hydrogenation reaction and steady-state hydrogenation catalysis demonstrates a unique single-site catalyst-with each site having the same catalytic activity. Reaction orders in the catalytic ethylene hydrogenation reaction of approximately 1/2 and 0 for H2 and C2H4, respectively, nearly match those for conventional noble-metal catalysts. In contrast to oxidative decarbonylation, thermal desorption of CO from silica-supported cluster 1 occurred exclusively at the basal plane, giving rise to sites that do not react with ethylene and are catalytically inactive for ethylene hydrogenation. The evidence of distinctive sites on the cluster catalyst leads to a model that links to hydrogen-transfer catalysis on metals-involving some surface sites that bond to both hydrocarbon and hydrogen and are catalytically engaged (so-called "*" sites) and others, at the basal plane, which bond hydrogen and CO but not hydrocarbon and are reservoir sites (so-called "S" sites).

9.
Dalton Trans ; 42(35): 12762-71, 2013 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-23917776

RESUMEN

We investigate the synthesis of accessible calix[4]arene-bound gold clusters consisting of open "coordinatively unsaturated" active sites, using a comparative approach that relies on calix[4]arene ligands with various upper- and lower-rim substituents. In contrast with a reported Au(I)-tert-butyl-calixarene phosphine complex, which exhibits a single cone conformer in solution, the H upper-rim analog exhibits multiple conformers in solution. This contrasts with observations of the tert-butyl upper-rim analog, which exhibits a single cone conformer in solution under similar conditions. In the solid state, as determined by single-crystal X-ray diffraction, both H and tert-butyl upper-rim analogs exhibit exclusively cone conformer. A detailed structural analysis of these two solid-state structures highlights a CH-π interaction involving a methoxy lower-rim substituent and phenyl substituent on P as the key feature that enforces a tight configuration of Au(I) atoms on the same side of the calix[4]arene lower-rim plane. We hypothesize that such a configuration promotes chelation of the ligand to a gold surface and facilitates the synthesis of small Au11-sized clusters after reduction of both complexes. The new cluster, like the one reported with the tert-butyl analog, has an extraordinary 25% of surface atoms that are open and accessible to a 2-NT (2-naphthalenethiol) probe in solution. We also investigated the effect of calix[4]arene lower-rim substituents that coordinate to the metal, by using N-heterocyclic carbene (NHC) functional groups rather than phosphines. Four small (<1.6 nm diameter) calix[4]arene NHC-bound gold clusters were synthesized, including three using novel calix[4]arene NHC ligands. The smallest calix[4]arene NHC-bound Au cluster consisted of a 1.2 nm gold core, and its number density of accessible and open surface sites was measured. This required development of a new titration method for open sites on gold clusters, using a SAMSA fluorescein dye molecule, which excites and emits at lower energy relative to the previously used 2-NT probe. The number density of open sites on the new calix[4]arene NHC-bound gold cluster measured by the SAMSA fluorescein probe strongly supports the generality of a mechanical model of accessibility, which does not depend on the functional group involved in binding to the gold surface and rather depends on the relative radii of curvature of bound ligands and the gold cluster core.


Asunto(s)
Calixarenos/química , Oro/química , Compuestos Heterocíclicos/química , Metano/análogos & derivados , Compuestos Orgánicos de Oro/síntesis química , Fenoles/química , Fosfinas/química , Ligandos , Metano/química , Modelos Moleculares , Estructura Molecular , Compuestos Orgánicos de Oro/química
10.
Dalton Trans ; 41(7): 2091-9, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22186796

RESUMEN

The synthesis and characterization of new cluster compounds represented by the series Ir(4)(CO)(12-x)L(x) (L = tert-butyl-calix[4]-arene(OPr)(3)(OCH(2)PPh(2)); x = 2 and 3) is reported using ESI mass spectrometry, NMR spectroscopy, IR spectroscopy and single-crystal X-ray diffraction. Thermally driven decarbonylation of the cluster compound series represented by x = 1-3 according to the formula above is followed via FTIR and NMR spectroscopies, and dynamic light scattering in toluene solution. The propensity of these clusters to decarbonylate in solution is shown to be directly correlated with number density of adsorbed calixarene phosphine ligands and controlled via Pauli repulsion between metal d and CO 5σ orbitals. The tendency for cluster aggregation unintuitively follows a trend that is exactly opposite to the cluster's propensity to decarbonylate. No cluster aggregation is observed for clusters consisting of x = 3, even after extensive decarbonylation via loss of all bridging CO ligands and coordinative unsaturation. Some of the CO lost during thermal treatment via decarbonylation can be rebound to the coordinatively unsaturated cluster consisting of x = 3. In contrast, the clusters consisting of x = 1 and x = 2 both aggregate into large nanoparticles when treated under identical conditions. Clusters in which the calixarene phosphine ligand is replaced with a sterically less demanding PPh(2)Me ligand 6 lead to significantly less coordinative unsaturation upon thermal treatment. Altogether, these data support a mechanical model of accessibility in coordinatively unsaturated metal clusters in solution, which hinges on having at least three sterically bulky organic ligands per Ir(4) core.


Asunto(s)
Iridio/química , Fenómenos Mecánicos , Compuestos Organometálicos/química , Monóxido de Carbono/química , Ligandos , Modelos Moleculares , Conformación Molecular , Espectroscopía Infrarroja por Transformada de Fourier
11.
Dalton Trans ; 39(9): 2194-7, 2010 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-20162190

RESUMEN

Isolated and patterned assemblies of Ir(4)-based metal polyhedra are described, in which a coordinated calixarene phosphine ligand enforces the desired cluster organization. The compounds are characterized by single-crystal X-ray diffraction and infrared spectroscopy.


Asunto(s)
Calixarenos/química , Iridio/química , Compuestos Organometálicos/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Compuestos Organometálicos/síntesis química , Espectrofotometría Infrarroja
12.
Nat Chem ; 2(12): 1062-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21107371

RESUMEN

In enzymes, the electronic and steric environments of active centres, and therefore their activity in biological processes, are controlled by the surrounding amino acids. In a similar manner, organic ligands have been used for the 'passivation' of metal clusters, that is, inhibition of their aggregation and control of their environment. However, the ability of enzymes to maintain large degrees of accessibility has remained difficult to mimic in synthetic systems in which little room, if any, is typically left to bind to other species. Here, using calix[4]arene macrocycles bearing phosphines as crude mimics of the rigid backbones of proteins, we demonstrate the synthesis of gold clusters and the control of their accessibility through an interplay between the sizes of the calixarene ligands and metal cores. For 0.9-nm cores, 25% of all the gold atoms within the cluster bind to the chemisorption probe 2-naphthalenethiol. This accessibility dramatically decreases with 1.1-nm and 4-nm gold cores.


Asunto(s)
Calixarenos/química , Metales/química , Catálisis , Enzimas/química , Oro/química , Nanopartículas del Metal/química , Naftalenos/química , Fosfinas/química , Espectrometría de Fluorescencia , Compuestos de Sulfhidrilo/química
13.
Langmuir ; 25(1): 153-8, 2009 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-19072069

RESUMEN

Gold nanoparticles postsynthetically modified with chiral 1,3-disubstituted diamino calix[4]arene ligands 2a and 2b are shown to exhibit a circular dichroism (CD)-active surface plasmon resonance absorption (SPR) band. Electronic communication between adsorbed ligand and the gold nanoparticle surface is evidenced in an almost 10-fold increase in the ligand molar ellipticity in the pi-pi* transition spectral range when bound to the gold surface relative to free solution. The footprint of ligand on the gold nanoparticle surface at saturation is measured to be 91 A(2) via monitoring the red shift in the SPR band accompanying ligand adsorption. At ligand concentrations above that required for surface saturation, the ellipticity of the band in the SPR spectral range plateaus to a constant value, whereas the ellipticity of the band in the pi-pi* transition spectral range continues to increase in a manner that corresponds to free ligand in solution. This critical observation correlates ligand adsorption and the onset of the CD-active SPR band. On the basis of the packing characteristics of the bulky calixarene ligand, which are controlled by achiral tert-butyl groups, and the postsynthetic nature of nanoaprticle surface modification of 4.7 nm gold cores used in this study, which precludes synthesis of chiral arrangements of gold atoms, a mechanism responsible for the CD-active SPR bands is proposed, which is based upon the influence of the asymmetric center of the chiral adsorbate on the electronic states of the metal nanoparticle core-an explanation supported by the observed interactions between the gold surface and adsorbed ligand.

14.
Langmuir ; 25(18): 10548-53, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19645476

RESUMEN

Use of organic ligands to partially passivate nanoparticles against sintering yet retain a degree of small molecule accessibility to the metal surface has been a lofty goal in functional materials synthesis, which in principle also enables the design of preferred electronic and steric environments on a nanoparticle surface. Catalysis using gold in particular requires donor ligands that facilitate an electron-rich metal surface and generalizable strategies for dealing with deactivation due to sintering. Here, synthesis and characterization of gold nanoparticles postsynthetically modified with the chelating ligand cone-5,11,17,23,29,35-hexa(tert-butyl)-37,39,41-tris(diphenylphosphinomethoxy)-38,40,42-trimethoxycalix[6]arene (1) is reported. In solution as well as when supported on the surface of TiO2, nanoparticles modified with tripodal calix[6]arene phosphine ligand 1 demonstrate enhanced protection against sintering relative to unmodified, tetraoctylammonium bromide-surfactant-stabilized gold nanoparticles. In between adsorbed calixarene ligands, there is accessible gold surface area in these nanoparticles, and this is measured quantitatively for the first time for a calixarene-modified nanoparticle, using a newly developed fluorescence methodology involving 2-naphthalenethiol as a relevant chemisorption probe molecule. Ligand steric bulk critically influences amount of accessible surface on the metal nanoparticle since the use of a smaller calix[4]arene ligand (MBC) results in a 7-fold lower accessible surface area relative to using 1 under otherwise similar conditions. In addition, surface coverage of 1 controls accessible surface area in an unintuitive fashion: a 4-fold increase in accessible metal surface area is observed upon increasing the surface coverage of 1 to be 1.5-fold higher than the minimum required for surface saturation. This is presumably the result of a more open ligand packing of 1 at higher surface coverages, which allows greater accessibility to 2-napthalenethiol.

15.
J Am Chem Soc ; 128(11): 3737-47, 2006 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-16536548

RESUMEN

Dielectric and acid-base bifunctional effects are elucidated in heterogeneous aminocatalysis using a synthetic strategy based on bulk silica imprinting. Acid-base cooperativity between silanols and amines yields a bifunctional catalyst for the Henry reaction that forms alpha,beta-unsaturated product via quasi-equilibrated iminium intermediate. Solid-state UV/vis spectroscopy of catalyst materials treated with salicylaldehyde demonstrates zwitterionic iminium ion to be the thermodynamically preferred product in the bifunctional catalyst. This product is observed to a much lesser extent relative to its neutral imine tautomer in primary amine catalysts having outer-sphere silanols partially replaced by aprotic functional groups. One of these primary amine catalysts, consisting of a polar outer-sphere environment derived from cyano-terminated capping groups, has activity comparable to that of the bifunctional catalyst in the Henry reaction, but instead forms the beta-nitro alcohol product in high selectivity (approximately 99%). This appears to be the first observation of selective alcohol formation in primary amine catalysis of the Henry reaction. A primary amine catalyst with a methyl-terminated outer-sphere also produces alcohol, albeit at a rate that is 50-fold slower than the cyano-terminated catalyst, demonstrating that outer-sphere dielectric constant affects catalyst activity. We further investigate the importance of organizational effects in enabling acid-base cooperativity within the context of bifunctional catalysis, and the unique role of the solid surface as a macroscopic ligand to impose this cooperativity. Our results unequivocally demonstrate that reaction mechanism and product selectivity in heterogeneous aminocatalysis are critically dependent on the outer-sphere environment.


Asunto(s)
Ácidos/química , Aminas/química , Dióxido de Silicio/química , Carbamatos/química , Catálisis , Electroquímica , Lisina/química , Espectrofotometría Ultravioleta , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA