Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Appl Biochem ; 68(2): 257-266, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32250477

RESUMEN

Di-2-picolylamine (DPA) is an organic compound that has been shown to possess antioxidant properties when conjugated to form a metal complex. The basis of this study was to determine the effects of DPA on the proliferation and apoptosis of human hepatocellular carcinoma cells and elucidate the possible mechanisms. The methylthiazol tetrazolium assay served to measure cell viability and generated an IC50 of 1591 µM. Luminometry was used to investigate caspase activity and ATP concentration. It was observed that the decreased cell viability was associated with reduced ATP levels. Despite increased Bax and caspase 9 activity, cell death was caspase independent as indicated by the reduction in caspase 3/7 activity. This was associated with the downregulation poly(ADP-ribose) polymerase cleavage (Western blotting). However, the Hoescht assay depicted nuclear condensation and apoptotic body formation with elevated DPA levels suggesting DNA damage in HepG2 cells. DNA damage assessed by the comet assay confirmed an increased comet tail formation. The presence of oxidative stress was investigated by quantifying reactive species (malondialdehyde and nitrates concentration) and Western blotting to confirm the expression of antioxidant proteins. The DPA increased lipid peroxidation (RNS), a marker of oxidative stress, consequently causing cell death. The accompanying upregulation of stress-associated proteins superoxide dismutase (SOD2), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and Hsp70 verifies oxidative stress.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Caspasas/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piperidinas/farmacología , Carcinoma Hepatocelular/patología , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología
2.
Environ Toxicol ; 36(9): 1857-1872, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34089297

RESUMEN

The study investigated the toxicogenic effects, molecular mechanisms and proteomic assessment of aflatoxin B1 (AFB1 ) on human renal cells. Hek293 cells were exposed to AFB1 (0-100 µM) for 24 h. The effect on cell viability was assessed using the methylthiazol tetrazolium (MTT) assay, which also produced the half maximal inhibitory concentration (IC50 ) used in subsequent assays. Free radical production was evaluated by quantifying malondialdehyde (MDA) and nitrate concentration, while DNA fragmentation was determined using the single cell gel electrophoresis (SCGE) assay and DNA gel electrophoresis. Damage to cell membranes was ascertained using the lactate dehydrogenase (LDH) assay. The concentration of ATP, reduced glutathione (GSH), necrosis, annexin V and caspase activity was measured by luminometry. Western blotting and quantitative PCR was used to assess the expression of proteins and genes associated with apoptosis and oxidative stress. The MTT assay revealed a reduction in cell viability of Hek293 cells as the AFB1 concentration was increased, with a half maximum inhibitory concentration (IC50 ) of 32.60 µM. The decreased viability corresponded to decreased ATP concentration. The upregulation of Hsp70 indicated that oxidative stress was induced in the AFB1 -treated cells. While this implies an increased production of free radicals, the accompanying upregulation of the antioxidant system indicates the activation of defense mechanisms to prevent cellular damage. Thus, membrane damage associated with increased radical formation was prevented as indicated by the reduced LDH release and necrosis. In addition, cytotoxic effects were evident as AFB1 activated the intrinsic pathway of apoptosis with corresponding increased DNA fragmentation, p53 and Bax upregulation and increased caspase activity, but externalization of phosphatidylserine (PS), a major hallmark of apoptosis, did not occur in AFB1 treated renal cells. The results suggest that AFB1 induced oxidative stress leading to cell death by the intrinsic pathway of apoptosis in renal cells.


Asunto(s)
Aflatoxina B1 , Proteómica , Aflatoxina B1/toxicidad , Apoptosis , Células HEK293 , Humanos , Riñón , Estrés Oxidativo
3.
Molecules ; 26(4)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562349

RESUMEN

As a member of the Orthomyxoviridae family of viruses, influenza viruses (IVs) are known causative agents of respiratory infection in vertebrates. They remain a major global threat responsible for the most virulent diseases and global pandemics in humans. The virulence of IVs and the consequential high morbidity and mortality of IV infections are primarily attributed to the high mutation rates in the IVs' genome coupled with the numerous genomic segments, which give rise to antiviral resistant and vaccine evading strains. Current therapeutic options include vaccines and small molecule inhibitors, which therapeutically target various catalytic processes in IVs. However, the periodic emergence of new IV strains necessitates the continuous development of novel anti-influenza therapeutic options. The crux of this review highlights the recent studies on the biology of influenza viruses, focusing on the structure, function, and mechanism of action of the M2 channel and neuraminidase as therapeutic targets. We further provide an update on the development of new M2 channel and neuraminidase inhibitors as an alternative to existing anti-influenza therapy. We conclude by highlighting therapeutic strategies that could be explored further towards the design of novel anti-influenza inhibitors with the ability to inhibit resistant strains.


Asunto(s)
Gripe Humana/tratamiento farmacológico , Orthomyxoviridae/efectos de los fármacos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Proteínas de la Matriz Viral/genética , Farmacorresistencia Viral/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Humanos , Gripe Humana/virología , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/genética , Orthomyxoviridae/genética , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/virología , Proteínas de la Matriz Viral/antagonistas & inhibidores
4.
J Biochem Mol Toxicol ; 34(12): e22607, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32869927

RESUMEN

Antibiotic resistance poses a great threat to human, animal and environmental health. ß-Lactam antibiotics have been successful in combating bacterial infections. However, the overuse, inappropriate prescribing, unavailability of new antibiotics and regulation barriers have exacerbated bacterial resistance to these antibiotics. 1,4,7-Triazacyclononane (TACN) is a cyclic organic tridentate inhibitor with strong metal-chelating abilities that has been shown to inhibit ß-lactamase enzymes and may represent an important breakthrough in the treatment of drug-resistant bacterial strains. However, its cytotoxicity in the liver is unknown. This study aimed to determine the effect of TACN on oxidative stress in HepG2 cells. The HepG2 cells were treated with 0 to 500 µM TACN for 24 hours to obtain an IC50 for use in subsequent assays. Free radicals were measured using the thiobarbituric acid reactive substance and nitric oxide synthase assays, respectively, while antioxidant levels were assessed using luminometry (glutathione [GSH] and adenosine triphosphate [ATP]) and Western blot analysis (SOD, catalase, GPx-1, HSP70 and Nrf2). Percentage survival fluctuated as TACN concentration increased with a calculated IC50 of 545 µM. A slight increase in HSP70 and Nrf2 expression indicated the presence of stress and a response against it, respectively. However, free radical production was not increased as indicated by decreased malondialdehyde levels and reactive nitrogen species. Glutathione levels increased slightly, while ATP levels were marginally altered. The results suggest that TACN does not induce oxidative stress in HepG2 cells and can be exploited as a potential inhibitor.


Asunto(s)
Compuestos Heterocíclicos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Western Blotting , Supervivencia Celular/efectos de los fármacos , Glutatión/metabolismo , Células Hep G2 , Humanos , Especies de Nitrógeno Reactivo/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
5.
Int J Toxicol ; 39(4): 341-351, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351145

RESUMEN

Di(2-picolyl) amine (DPA) is a pyridine derivative known to chelate metal ions and thus has potential anticancer properties; however, its effect on normal cells remains unchartered necessitating further research. This study, therefore, investigated the mechanistic effects of DPA-induced cytotoxicity and apoptosis in the HEK293 cell line. Methods required that an half the maximum inhibition concentration (IC50) was derived using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Analyses aimed to assess oxidative stress, membrane damage, and DNA fragmentation by means of biochemical assays were performed. Luminometry analysis was carried out to understand the mechanism of apoptosis induction by determining the levels of adenosine triphosphate (ATP) and the activities of caspase-8, -9, and -3/7. Western blotting was used to ascertain the expression of apoptotic and stress-related proteins. An IC50 of 1,079 µM DPA was obtained. Antioxidant effect correlated with a minimum increase in reactive oxygen species induced lipid peroxidation. The increase in initiator caspase-8 and -9 and executioner caspase-3/7 activities by DPA-induced apoptosis albeit prompting a decline in the levels of ATP. Furthermore, DPA brought about the following consequences on HEK293 cells: markedly elevated tail lengths of the comets, poly (ADP-ribose) polymerase 1 cleavage, and apoptotic body formation observed in the late stages. The cytotoxic effects of DPA in HEK293 cells may be mediated by induction of apoptosis via the caspase-dependent mechanism.


Asunto(s)
Aminas/toxicidad , Quelantes/toxicidad , Ácidos Picolínicos/toxicidad , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Daño del ADN , Células HEK293 , Humanos , Riñón/citología , Peroxidación de Lípido/efectos de los fármacos , Nitratos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
6.
Molecules ; 25(8)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32295059

RESUMEN

Heat shock protein 90 (Hsp90) is a crucial component in carcinogenesis and serves as a molecular chaperone that facilitates protein maturation whilst protecting cells against temperature-induced stress. The function of Hsp90 is highly dependent on adenosine triphosphate (ATP) binding to the N-terminal domain of the protein. Thus, inhibition through displacement of ATP by means of competitive binding with a suitable organic molecule is considered an attractive topic in cancer research. Radicicol (RD) and its derivative, resorcinylic isoxazole amine NVP-AUY922 (NVP), have shown promising pharmacodynamics against Hsp90 activity. To date, the underlying binding mechanism of RD and NVP has not yet been investigated. In this study, we provide a comprehensive understanding of the binding mechanism of RD and NVP, from an atomistic perspective. Density functional theory (DFT) calculations enabled the analyses of the compounds' electronic properties and results obtained proved to be significant in which NVP was predicted to be more favorable with solvation free energy value of -23.3 kcal/mol and highest stability energy of 75.5 kcal/mol for a major atomic delocalization. Molecular dynamic (MD) analysis revealed NVP bound to Hsp90 (NT-NVP) is more stable in comparison to RD (NT-RD). The Hsp90 protein exhibited a greater binding affinity for NT-NVP (-49.4 ± 3.9 kcal/mol) relative to NT-RD (-28.9 ± 4.5 kcal/mol). The key residues influential in this interaction are Gly 97, Asp 93 and Thr 184. These findings provide valuable insights into the Hsp90 dynamics and will serve as a guide for the design of potent novel inhibitors for cancer treatment.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Isoxazoles/química , Macrólidos/química , Resorcinoles/química , Adenosina Trifosfato/química , Unión Competitiva , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Enlace de Hidrógeno , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Electricidad Estática , Termodinámica
7.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478231

RESUMEN

Metallo-ß-lactamase (MBL)-producing Enterobacteriaceae are of grave clinical concern, particularly as there are no metallo-ß-lactamase inhibitors approved for clinical use. The discovery and development of MBL inhibitors to restore the efficacy of available ß-lactams are thus imperative. We investigated a zinc-chelating moiety, 1,4,7-triazacyclononane (TACN), for its inhibitory activity against clinical carbapenem-resistant Enterobacteriaceae MICs, minimum bactericidal concentrations (MBCs), the serum effect, fractional inhibitory concentration indexes, and time-kill kinetics were determined using broth microdilution techniques according to Clinical and Laboratory Standards Institute (CSLI) guidelines. Enzyme kinetic parameters and the cytotoxic effects of TACN were determined using spectrophotometric assays. The interactions of the enzyme-TACN complex were investigated by computational studies. Meropenem regained its activity against carbapenemase-producing Enterobacteriaceae, with the MIC decreasing from between 8 and 64 mg/liter to 0.03 mg/liter in the presence of TACN. The TACN-meropenem combination showed bactericidal effects with an MBC/MIC ratio of ≤4, and synergistic activity was observed. Human serum effects on the MICs were insignificant, and TACN was found to be noncytotoxic at concentrations above the MIC values. Computational studies predicted that TACN inhibits MBLs by targeting their catalytic active-site pockets. This was supported by its inhibition constant (Ki ), which was 0.044 µM, and its inactivation constant (Kinact), which was 0.0406 min-1, demonstrating that TACN inhibits MBLs efficiently and holds promise as a potential inhibitor.IMPORTANCE Carbapenem-resistant Enterobacteriaceae (CRE)-mediated infections remain a significant public health concern and have been reported to be critical in the World Health Organization's priority pathogens list for the research and development of new antibiotics. CRE produce enzymes, such as metallo-ß-lactamases (MBLs), which inactivate ß-lactam antibiotics. Combination therapies involving a ß-lactam antibiotic and a ß-lactamase inhibitor remain a major treatment option for infections caused by ß-lactamase-producing organisms. Currently, no MBL inhibitor-ß-lactam combination therapy is clinically available for MBL-positive bacterial infections. Hence, developing efficient molecules capable of inhibiting these enzymes could be a promising way to overcome this phenomenon. TACN played a significant role in the inhibitory activity of the tested molecules against CREs by potentiating the activity of carbapenem. This study demonstrates that TACN inhibits MBLs efficiently and holds promises as a potential MBL inhibitor to help curb the global health threat posed by MBL-producing CREs.


Asunto(s)
Antibacterianos/farmacología , Enterobacteriaceae/efectos de los fármacos , Compuestos Heterocíclicos/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , beta-Lactamas/farmacología , Enterobacteriaceae/enzimología , Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
8.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817549

RESUMEN

The study investigated the cytotoxic effect of a natural polyphenolic compound Tannic acid (TA) on human liver hepatocellular carcinoma (HepG2) cells and elucidated the possible mechanisms that lead to apoptosis and oxidative stress HepG2 cell. The HepG2 cells were treated with TA for 24 h and various assays were conducted to determine whether TA could induce cell death and oxidative stress. The cell viability assay was used to determine the half maximal inhibitory concentration (IC50), caspase activity and cellular ATP were determined by luminometry. Microscopy was employed to determine deoxyribonucleic acid (DNA) integrity, while thiobarbituric acid (TBARS) and nitric oxide synthase (NOS) assays were used to elucidate cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS), respectively. Western blotting was used to confirm protein expression. The results revealed that tannic acid induced caspase activation and increased the presence of cellular ROS and RNS, while downregulating antioxidant expression. Tannic acid also showed increased cell death and increased DNA fragmentation. In conclusion, TA was able to induce apoptosis by DNA fragmentation via caspase-dependent and caspase-independent mechanism. It was also able to induce oxidative stress, consequently contributing to cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Taninos/farmacología , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Proteínas de Neoplasias/biosíntesis , Especies Reactivas de Oxígeno/metabolismo
9.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30006399

RESUMEN

The worldwide proliferation of life-threatening metallo-ß-lactamase (MBL)-producing Gram-negative bacteria is a serious concern to public health. MBLs are compromising the therapeutic efficacies of ß-lactams, particularly carbapenems, which are last-resort antibiotics indicated for various multidrug-resistant bacterial infections. Inhibition of enzymes mediating antibiotic resistance in bacteria is one of the major promising means for overcoming bacterial resistance. Compounds having potential MBL-inhibitory activity have been reported, but none are currently under clinical trials. The need for developing safe and efficient MBL inhibitors (MBLIs) is obvious, particularly with the continuous spread of MBLs worldwide. In this review, the emergence and escalation of MBLs in Gram-negative bacteria are discussed. The relationships between different class B ß-lactamases identified up to 2017 are represented by a phylogenetic tree and summarized. In addition, approved and/or clinical-phase serine ß-lactamase inhibitors are recapitulated to reflect the successful advances made in developing class A ß-lactamase inhibitors. Reported MBLIs, their inhibitory properties, and their purported modes of inhibition are delineated. Insights into structural variations of MBLs and the challenges involved in developing potent MBLIs are also elucidated and discussed. Currently, natural products and MBL-resistant ß-lactam analogues are the most promising agents that can become clinically efficient MBLIs. A deeper comprehension of the mechanisms of action and activity spectra of the various MBLs and their inhibitors will serve as a bedrock for further investigations that can result in clinically useful MBLIs to curb this global menace.


Asunto(s)
Infecciones Bacterianas/microbiología , Bacterias Gramnegativas/efectos de los fármacos , Inhibidores de beta-Lactamasas/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/enzimología , Bacterias Gramnegativas/genética , Humanos , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
10.
BMC Vet Res ; 12(1): 145, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27439708

RESUMEN

BACKGROUND: Bovine tuberculosis (BTB) is a contagious, debilitating human and animal disease caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex. The study objective were to estimate the frequency of BTB, examine genetic diversity of the M. bovis population in cattle from five regions in Mali and to determine whether M. bovis is involved in active tuberculosis (TB) in humans. Samples from suspected lesions on cattle at the slaughterhouses were collected. Mycobacterial smear, culture confirmation, and spoligotyping were used for diagnosis and species identification. Mycobacterium DNA from TB patients was spoligotyped to identify M. bovis. RESULTS: In total, 675 cattle have been examined for lesions in the five regions of Mali. Out of 675 cattle, 79 specimens presented lesions and then examined for the presence of M. bovis. Thus, 19 (24.1 %) were identified as M. bovis; eight (10.1 %) were non-tuberculous Mycobacterium (NTM). Nineteen spoligotype patterns were identified among 79 samples with five novel patterns. One case of M. bovis (spoligotype pattern SB0300) was identified among 67 TB patients. CONCLUSION: This study estimates a relatively true proportion of BTB in the regions of Mali and reveals new spoligotype patterns.


Asunto(s)
Variación Genética , Mycobacterium bovis/genética , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/microbiología , Tuberculosis/epidemiología , Tuberculosis/microbiología , Animales , Técnicas de Tipificación Bacteriana , Bovinos , Humanos , Malí/epidemiología , Repeticiones de Minisatélite/genética , Mycobacterium bovis/aislamiento & purificación , Tuberculosis/patología , Tuberculosis Bovina/patología
11.
Xenobiotica ; 46(3): 247-52, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26207565

RESUMEN

1. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) combines the sensitivity and selectivity of mass spectrometry with spatial analysis to provide a new dimension for histological analyses of the distribution of drugs in tissue. Pretomanid is a pro-drug belonging to a class of antibiotics known as nitroimidizoles, which have been proven to be active under hypoxic conditions and to the best of our knowledge there have been no studies investigating the distribution and localisation of this class of compounds in the brain using MALDI MSI. 2. Herein, we report on the distribution of pretomanid in the healthy rat brain after intraperitoneal administration (20 mg/kg) using MALDI MSI. Our findings showed that the drug localises in specific compartments of the rat brain viz. the corpus callosum, a dense network of neurons connecting left and right cerebral hemispheres. 3. This study proves that MALDI MSI technique has great potential for mapping the pretomanid distribution in uninfected tissue samples, without the need for molecular labelling.


Asunto(s)
Antituberculosos/farmacocinética , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Nitroimidazoles/farmacocinética , Profármacos/farmacocinética , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Distribución Tisular
12.
Pathogens ; 13(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38251335

RESUMEN

Global tuberculosis (TB) eradication is undermined by increasing prevalence of emerging resistance to available drugs, fuelling ongoing demand for more complex diagnostic and treatment strategies. Early detection of TB drug resistance coupled with therapeutic decision making guided by rapid characterisation of pre-treatment and treatment emergent resistance remains the most effective strategy for averting Drug-Resistant TB (DR-TB) transmission, reducing DR-TB associated mortality, and improving patient outcomes. Solid- and liquid-based mycobacterial culture methods remain the gold standard for Mycobacterium tuberculosis (MTB) detection and drug susceptibility testing (DST). Unfortunately, delays to result return, and associated technical challenges from requirements for specialised resource and capacity, have limited DST use and availability in many high TB burden resource-limited countries. There is increasing availability of a variety of rapid nucleic acid-based diagnostic assays with adequate sensitivity and specificity to detect gene mutations associated with resistance to one or more drugs. While a few of these assays produce comprehensive calls for resistance to several first- and second-line drugs, there is still no endorsed genotypic drug susceptibility test assay for bedaquiline, pretomanid, and delamanid. The global implementation of regimens comprising these novel drugs in the absence of rapid phenotypic drug resistance profiling has generated a new set of diagnostic challenges and heralded a return to culture-based phenotypic DST. In this review, we describe the available tools for rapid diagnosis of drug-resistant tuberculosis and discuss the associated opportunities and challenges.

13.
Artículo en Inglés | MEDLINE | ID: mdl-36901164

RESUMEN

While Hepatitis B virus (HBV) and the human immunodeficiency virus (HIV) are endemic in West Africa, the prevalence of HBV/HIV coinfection and their associated risk factors in children remains unclear. In this review, we sought to assess HBsAg seroprevalence among 0- to 16-year-olds with and without HIV in West African countries and the risk factors associated with HBV infection in this population. Research articles between 2000 and 2021 that reported the prevalence of HBV and associated risk factors in children in West Africa were retrieved from the literature using the Africa Journals Online (AJOL), PubMed, Google Scholar, and Web of Science databases as search tools. StatsDirect, a statistical software, was used to perform a meta-analysis of the retained studies. HBV prevalence and heterogeneity were then assessed with a 95% confidence interval (CI). Publication bias was evaluated using funnel plot asymmetry and Egger's test. Twenty-seven articles conducted across seven West African countries were included in this review. HBV prevalence among persons aged 0 to 16 years was 5%, based on the random analysis, given the great heterogeneity of the studies. By country, the highest prevalence was observed in Benin (10%), followed by Nigeria (7%), and Ivory Coast (5%), with Togo (1%) having the lowest. HBV prevalence in an HIV-infected population of children was (9%). Vaccinated children had lower HBV prevalence (2%) than unvaccinated children (6%). HBV prevalence with a defined risk factor such as HIV co-infection, maternal HBsAg positivity, undergoing surgery, scarification, or being unvaccinated ranged from 3-9%. The study highlights the need to reinforce vaccination of newborns, screening for HBV, and HBV prophylaxis among pregnant women in Africa, particularly in West Africa, to achieve the WHO goal of HBV elimination, particularly in children.


Asunto(s)
Coinfección , Infecciones por VIH , Hepatitis B , Humanos , Femenino , Niño , Recién Nacido , Embarazo , Virus de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , VIH , Estudios Seroepidemiológicos , Hepatitis B/epidemiología , Infecciones por VIH/epidemiología , Côte d'Ivoire/epidemiología , Prevalencia , Coinfección/epidemiología
14.
Int J Mycobacteriol ; 12(3): 235-240, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37721226

RESUMEN

Background: Pulmonary tuberculosis (TB) remains one of the main causes of morbidity and mortality in Mali. Nontuberculous mycobacteria (NTM) infections are very common but are often cofounded with TB because of the similarity of symptoms, which makes the diagnosis difficult. Hematological abnormalities associated with TB have been described, but not with NTM. Therefore, the goal of this study was to compare the hematological parameters of patients infected with TB and NTM infections. Methods: A cross-sectional study enrolling TB and NTM participants was conducted in 2018-2020. Five milliliters of venous blood and sputum samples were collected from each participant to determine the hematological parameters using the RUBY CELL-DYN Ruby Version 2.2 ML. A BACTEC MGIT 960 and multiplex reverse transcription-polymerase chain reaction were used to distinguish Mycobacterium tuberculosis from NTM, respectively. Results: Of the total 90 patients enrolled, there was a decrease in hemoglobin and hematocrit levels in both the groups (P = 0.05). In addition, we found that the percentages of basophil cells (P = 0.01) and mean values of platelets (P = 0.04) were significantly higher in TB patients than those of NTMs. Moreover, the mean of absolute values of eosinophil cells of TB patients was significantly lower than those of NTMs (P = 0.03). Conclusion: We found significant statistical differences in basophils, platelets, and eosinophils in differentiating TB and NTM in this pilot study. Future studies with patients at different clinical stages are needed to confirm the hematological profiles of TB and NTM patients.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Tuberculosis , Humanos , Malí , Estudios Transversales , Proyectos Piloto , Infecciones por Mycobacterium no Tuberculosas/microbiología , Tuberculosis/diagnóstico , Tuberculosis/complicaciones , Micobacterias no Tuberculosas/genética
15.
IJID Reg ; 6: 24-28, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36448028

RESUMEN

Background: The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants may have contributed to prolonging the pandemic, and increasing morbidity and mortality related to coronavirus disease 2019 (COVID-19). This article describes the dynamics of circulating SARS-CoV-2 variants identified during the different COVID-19 waves in Mali between April and October 2021. Methods: The respiratory SARS-CoV-2 complete spike (S) gene from positive samples was sequenced. Generated sequences were aligned by Variant Reporter v3.0 using the Wuhan-1 strain as the reference. Mutations were noted using the GISAID and Nextclade platforms. Results: Of 16,797 nasopharyngeal swab samples tested, 6.0% (1008/16,797) tested positive for SARS-CoV-2 on quantitative reverse transcription polymerase chain reaction. Of these, 16.07% (162/1008) had a cycle threshold value ≤28 and were amplified and sequenced. The complete S gene sequence was recovered from 80 of 162 (49.8%) samples. Seven distinct variants were identified: Delta (62.5%), Alpha (1.2%), Beta (1.2%), Eta (30.0%), 20B (2.5%), 19B (1.2%) and 20A (1.2%). Conclusions and perspectives: Several SARS-CoV-2 variants were present during the COVID-19 waves in Mali between April and October 2021. The continued emergence of new variants highlights the need to strengthen local real-time sequencing capacity and genomic surveillance for better and coordinated national responses to SARS-CoV-2.

16.
Microb Drug Resist ; 28(6): 710-733, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35696336

RESUMEN

Poultry is a cheap source of animal protein and constituent of diets in Africa. Poultry can serve as a reservoir for Salmonella and cause food-borne infections in humans. This review describes Salmonella contamination of food, poultry, and the farming environment, antimicrobial resistance profiles, and serotypes of Salmonella, as well as the farming systems, antimicrobial use (AMU), hygiene, and husbandry conditions used to rear poultry in Africa. Using the PRISMA (preferred reporting items for systematic reviews and meta-analysis) guidelines, PubMed, Science Direct, and Web of Science databases were searched using a set of predefined keywords. Full-length research articles in English were examined for the period 2010-2020 and relevant information extracted for the narrative synthesis. Of the articles that met the inclusion criteria, 63.1% were conducted on farms and among households, while 36.9% were undertaken at government-controlled laboratories, which quarantine imported birds, processing plants, and retail outlets. The farming systems were intensive, semi-intensive, and extensive. AMU was described in 11.5% of the studies and varied within and across countries. Multidrug-resistant (MDR) Salmonella isolates were detected in 30 studies and the prevalence ranged from 12.1% in Zimbabwe to 100% in Egypt, Ethiopia, Nigeria, Senegal, and South Africa. A total of 226 different Salmonella serotypes were reported. Twenty-four (19.7%) of the studies reported food-borne Salmonella contamination in eggs, poultry, and poultry products at retail outlets and processing plants. The apparent extensive use of antimicrobials and circulation of MDR Salmonella isolates of various serotypes in Africa is a concern. It is important to implement stricter biosecurity measures on farms, regulate the use of antimicrobials and implement surveillance systems, in addition to food safety measures to monitor the quality of poultry and poultry products for human consumption.


Asunto(s)
Antiinfecciosos , Aves de Corral , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana , Nigeria , Salud Pública , Salmonella
17.
Comput Math Methods Med ; 2022: 2147763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685897

RESUMEN

Cancer is a disease caused by the uncontrolled, abnormal growth of cells in different anatomic sites. In 2018, it was predicted that the worldwide cancer burden would rise to 18.1 million new cases and 9.6 million deaths. Anticancer compounds, often known as chemotherapeutic medicines, have gained much interest in recent cancer research. These medicines work through various biological processes in targeting cells at various stages of the cell's life cycle. One of the most significant roadblocks to developing anticancer drugs is that traditional chemotherapy affects normal cells and cancer cells, resulting in substantial side effects. Recently, advancements in new drug development methodologies and the prediction of the targeted interatomic and intermolecular ligand interaction sites have been beneficial. This has prompted further research into developing and discovering novel chemical species as preferred therapeutic compounds against specific cancer types. Identifying new drug molecules with high selectivity and specificity for cancer is a prerequisite in the treatment and management of the disease. The overexpression of HSP90 occurs in patients with cancer, and the HSP90 triggers unstable harmful kinase functions, which enhance carcinogenesis. Therefore, the development of potent HSP90 inhibitors with high selectivity and specificity becomes very imperative. The activities of HSP90 as chaperones and cochaperones are complex due to the conformational dynamism, and this could be one of the reasons why no HSP90 drugs have made it beyond the clinical trials. Nevertheless, HSP90 modulations appear to be preferred due to the competitive inhibition of the targeted N-terminal adenosine triphosphate pocket. This study, therefore, presents an overview of the various computational models implored in the development of HSP90 inhibitors as anticancer medicines. We hereby suggest an extensive investigation of advanced computational modelling of the three different domains of HSP90 for potent, effective inhibitor design with minimal off-target effects.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Computadores , Descubrimiento de Drogas , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
18.
Int J Microbiol ; 2022: 5121273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35069744

RESUMEN

The presence of the zoonotic pathogen Salmonella in the food supply chain poses a serious public health threat. This study describes the prevalence, susceptibility profiles, virulence patterns, and clonality of Salmonella from a poultry flock monitored over six weeks, using the farm-to-fork approach. Salmonella was isolated using selective media and confirmed to the genus and species level by real-time polymerase chain reaction (RT-PCR) of the invA and iroB genes, respectively. Antimicrobial susceptibility profiles were determined using Vitek-2 and the Kirby-Bauer disk diffusion method against a panel of 21 antibiotics recommended by the World Health Organisation Advisory Group on Integrated Surveillance of Antimicrobial Resistance (WHO-AGISAR). Selected virulence genes were identified by conventional PCR, and clonality was determined using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). Salmonella was present in 32.1% of the samples: on the farm (30.9%), at the abattoir (0.6%), and during house decontamination (0.6%). A total of 210 isolates contained the invA and iroB genes. Litter, faeces, and carcass rinsate isolates were classified as resistant to cefuroxime (45.2%), cefoxitin (1.9%), chloramphenicol (1.9%), nitrofurantoin (0.4%), pefloxacin (11.4%), and azithromycin (11%). Multidrug resistance (MDR) was observed among 3.8% of the isolates. All wastewater and 72.4% of carcass rinsate isolates were fully susceptible. All isolates harboured the misL, orfL, pipD, stn, spiC, hilA, and sopB virulence genes, while pefA, spvA, spvB, and spvC were absent. In addition, fliC was only present among the wastewater isolates. Various ERIC-PCR patterns were observed throughout the continuum with different subtypes, indicating the unrelated spread of Salmonella. This study concluded that poultry and the poultry environment serve as reservoirs for resistant and pathogenic Salmonella. However, there was no evidence of transmission along the farm-to-fork continuum.

19.
Int J Infect Dis ; 117: 204-211, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35134562

RESUMEN

BACKGROUND AND AIMS: Tuberculosis (TB) remains an important global health issue worldwide. Despite this scourge threatening many human lives, especially in developing countries, thus far, no advanced molecular epidemiology study using recent and more accurate tools has been conducted in Mali. Therefore, this study aimed to use variable-number tandem repeats of mycobacterial interspersed repetitive units (MIRU-VNTR) technology coupled with the spoligotyping method to accurately determine the hot spots and establish the epidemiological transmission links of TB in Bamako, Mali. METHODS: In a cross-sectional study, 245 isolates of Mycobacterium tuberculosis complex (MTBC) were characterized using spoligotyping and MIRU-VNTR, and an epidemiological investigation was conducted. RESULTS: Of the 245 isolates, 184 (75.1%) were formally identified. The most widespread strain was the Cameroon strain (83; 45.1%). Eight major clusters were identified: Ghana (27; 14.7%), West African 2 (22; 12%), Haarlem (13; 7.1%), H37Rv (t) (8; 4.3%), Latin American Mediterranean (8; 4.3%), and Uganda I and II (6; 3.3%). Statistical analysis showed a significant difference between lineages from the respective referral health centers of Bamako, Mali (P = 0.01). CONCLUSION: This study establishes, for the first time, an accurate spatial distribution of circulating MTB strains in Bamako, Mali. The data was used to identify strains and "hot spots" causing TB infection and can also be used for more targeted public health responses, particularly for hot spots of drug-resistant strains.


Asunto(s)
Mycobacterium tuberculosis , Técnicas de Tipificación Bacteriana , Estudios Transversales , Variación Genética , Genotipo , Humanos , Malí/epidemiología , Repeticiones de Minisatélite , Epidemiología Molecular , Mycobacterium tuberculosis/genética , Derivación y Consulta
20.
Nat Commun ; 13(1): 688, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115515

RESUMEN

Disparities in SARS-CoV-2 genomic surveillance have limited our understanding of the viral population dynamics and may delay identification of globally important variants. Despite being the most populated country in Africa, Nigeria has remained critically under sampled. Here, we report sequences from 378 SARS-CoV-2 isolates collected in Oyo State, Nigeria between July 2020 and August 2021. In early 2021, most isolates belonged to the Alpha "variant of concern" (VOC) or the Eta lineage. Eta outcompeted Alpha in Nigeria and across West Africa, persisting in the region even after expansion of an otherwise rare Delta sub-lineage. Spike protein from the Eta variant conferred increased infectivity and decreased neutralization by convalescent sera in vitro. Phylodynamic reconstructions suggest that Eta originated in West Africa before spreading globally and represented a VOC in early 2021. These results demonstrate a distinct distribution of SARS-CoV-2 lineages in Nigeria, and emphasize the need for improved genomic surveillance worldwide.


Asunto(s)
COVID-19/virología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Adolescente , Adulto , África Occidental , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/diagnóstico , COVID-19/epidemiología , Niño , Preescolar , Femenino , Genoma Viral , Humanos , Masculino , Persona de Mediana Edad , Mutación , Nigeria/epidemiología , Filogenia , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA