Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 17(10): 6443-6452, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892637

RESUMEN

Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

2.
Materials (Basel) ; 16(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37109969

RESUMEN

The automobile industry commonly uses cyclic corrosion tests (CCTs) to evaluate the durability of materials. However, the extended evaluation period required by CCTs can pose challenges in this fast-paced industry. To address this issue, a new approach that combines a CCT with an electrochemically accelerated corrosion test has been explored, to shorten the evaluation period. This method involves the formation of a corrosion product layer through a CCT, which leads to localized corrosion, followed by applying an electrochemically accelerated corrosion test using an agar gel electrolyte to preserve the corrosion product layer as much as possible. The results indicate that this approach can achieve comparable localized corrosion resistance, with similar localized corrosion area ratios and maximum localized corrosion depths to those obtained through a conventional CCT in half the time.

3.
Materials (Basel) ; 15(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36233972

RESUMEN

In this work, a cerium/tetraethylenepentamine dithiocarbamate complex was synthesized and evaluated for the corrosion inhibition capability on an AA2024-T3 Al alloy in a 3.5% NaCl medium. The synthesized compounds were characterized via spectroscopic techniques. The corrosion inhibition behaviour of the complex was elucidated by electrochemical measurements and surface analysis techniques. Based on electrochemical test results, the corrosion inhibition efficiency of the complex increases with the immersion time of aluminium alloy in the test solution. The corrosion inhibition reaches 96.80% when the aluminium is immersed in a 3.5% NaCl solution containing a corrosion inhibitor for 120 h. The potentiodynamic polarization test results show that the complex acts as a mixed-type corrosion inhibitor and the passive range is widened. The surface analysis methods reveal that the corrosion inhibition ability of the complex originated from the formation of a protective layer on the Al surface. This film is created from the physisorption and chemisorption of cerium ions and organic parts simultaneously released from the complex molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA