Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Vasc Interv Radiol ; 35(6): 900-908.e2, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508448

RESUMEN

PURPOSE: To develop a noninvasive therapeutic approach able to alter the biophysical organization and physiology of the extracellular matrix (ECM) in breast cancer. MATERIALS AND METHODS: In a 4T1 murine model of breast cancer, histoplasty treatment with a proprietary 700-kHz multielement therapy transducer using a coaxially aligned ultrasound (US) imaging probe was used to target the center of an ex vivo tumor and deliver subablative acoustic energy. Tumor collagen morphology was qualitatively evaluated before and after histoplasty with second harmonic generation. Separately, mice bearing bilateral 4T1 tumors (n = 4; total tumors = 8) were intravenously injected with liposomal doxorubicin. The right flank tumor was histoplasty-treated, and tumors were fluorescently imaged to detect doxorubicin uptake after histoplasty treatment. Next, 4T1 tumor-bearing mice were randomized into 2 treatment groups (sham vs histoplasty, n = 3 per group). Forty-eight hours after sham/histoplasty treatment, tumors were harvested and analyzed using flow cytometry. RESULTS: Histoplasty significantly increased (P = .002) liposomal doxorubicin diffusion into 4T1 tumors compared with untreated tumors (2.12- vs 1.66-fold increase over control). Flow cytometry on histoplasty-treated tumors (n = 3) demonstrated a significant increase in tumor macrophage frequency (42% of CD45 vs 33%; P = .022) and a significant decrease in myeloid-derived suppressive cell frequency (7.1% of CD45 vs 10.3%; P = .044). Histoplasty-treated tumors demonstrated increased CD8+ (5.1% of CD45 vs 3.1%; P = .117) and CD4+ (14.1% of CD45 vs 11.8%; P = .075) T-cell frequency. CONCLUSIONS: Histoplasty is a nonablative focused US approach to noninvasively modify the tumor ECM, increase chemotherapeutic uptake, and alter the tumor immune microenvironment.


Asunto(s)
Doxorrubicina , Ratones Endogámicos BALB C , Microambiente Tumoral , Animales , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Femenino , Línea Celular Tumoral , Ratones , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/administración & dosificación , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Neoplasias Mamarias Experimentales/cirugía , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias de la Mama/patología , Transductores , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Polietilenglicoles/química , Modelos Animales de Enfermedad , Antígenos Comunes de Leucocito
2.
Cancer Immunol Immunother ; 72(7): 2459-2471, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37016127

RESUMEN

BACKGROUND: The in-situ vaccine using CpG oligodeoxynucleotide combined with OX40 agonist antibody (CpG + OX40) has been shown to be an effective therapy activating an anti-tumor T cell response in certain settings. The roles of tumor volume, tumor model, and the addition of checkpoint blockade in the efficacy of CpG + OX40 in-situ vaccination remains unknown. METHODS: Mice bearing flank tumors (B78 melanoma or A20 lymphoma) were treated with combinations of CpG, OX40, and anti-CTLA-4. Tumor growth and survival were monitored. In vivo T cell depletion, tumor cell phenotype, and tumor infiltrating lymphocyte (TIL) studies were performed. Tumor cell sensitivity to CpG and macrophages were evaluated in vitro. RESULTS: As tumor volumes increased in the B78 (one-tumor) and A20 (one-tumor or two-tumor) models, the anti-tumor efficacy of the in-situ vaccine decreased. In vitro, CpG had a direct effect on A20 proliferation and phenotype and an indirect effect on B78 proliferation via macrophage activation. As A20 tumors progressed in vivo, tumor cell phenotype changed, and T cells became more involved in the local CpG + OX40 mediated anti-tumor response. In mice with larger tumors that were poorly responsive to CpG + OX40, the addition of anti-CTLA-4 enhanced the anti-tumor efficacy in the A20 but not B78 models. CONCLUSIONS: Increased tumor volume negatively impacts the anti-tumor capability of CpG + OX40 in-situ vaccine. The addition of checkpoint blockade augmented the efficacy of CpG + OX40 in the A20 but not B78 model. These results highlight the importance of considering multiple preclinical model conditions when assessing the efficacy of cancer immunotherapy regimens and their translation to clinical testing.


Asunto(s)
Linfoma , Melanoma , Vacunas , Ratones , Animales , Linfocitos T , Melanoma/genética , Macrófagos , Receptores OX40 , Inmunoterapia/métodos
3.
J Immunol ; 207(2): 720-734, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34261667

RESUMEN

Most shared resource flow cytometry facilities do not permit analysis of radioactive samples. We are investigating low-dose molecular targeted radionuclide therapy (MTRT) as an immunomodulator in combination with in situ tumor vaccines and need to analyze radioactive samples from MTRT-treated mice using flow cytometry. Further, the sudden shutdown of core facilities in response to the COVID-19 pandemic has created an unprecedented work stoppage. In these and other research settings, a robust and reliable means of cryopreservation of immune samples is required. We evaluated different fixation and cryopreservation protocols of disaggregated tumor cells with the aim of identifying a protocol for subsequent flow cytometry of the thawed sample, which most accurately reflects the flow cytometric analysis of the tumor immune microenvironment of a freshly disaggregated and analyzed sample. Cohorts of C57BL/6 mice bearing B78 melanoma tumors were evaluated using dual lymphoid and myeloid immunophenotyping panels involving fixation and cryopreservation at three distinct points during the workflow. Results demonstrate that freezing samples after all staining and fixation are completed most accurately matches the results from noncryopreserved equivalent samples. We observed that cryopreservation of living, unfixed cells introduces a nonuniform alteration to PD1 expression. We confirm the utility of our cryopreservation protocol by comparing tumors treated with in situ tumor vaccines, analyzing both fresh and cryopreserved tumor samples with similar results. Last, we use this cryopreservation protocol with radioactive specimens to demonstrate potentially beneficial effector cell changes to the tumor immune microenvironment following administration of a novel MTRT in a dose- and time-dependent manner.


Asunto(s)
Criopreservación/métodos , Citometría de Flujo/métodos , Leucocitos Mononucleares/inmunología , Melanoma Experimental/patología , Células Mieloides/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Inmunofenotipificación/métodos , Ratones , Ratones Endogámicos C57BL , Células T Asesinas Naturales/inmunología , Pandemias , Transducción de Señal/inmunología , Microambiente Tumoral/inmunología
4.
Cancer Immunol Immunother ; 71(9): 2057-2065, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35024897

RESUMEN

Interleukin-12 (IL-12) is a type I cytokine involved in both innate and adaptive immunity that stimulates T and natural killer cell activity and induces interferon gamma production. IL-12 has been identified as a potential immunotherapeutic component for combinatorial cancer treatments. While IL-12 has successfully been used to treat a variety of cancers in mice, it was associated with toxicity when administered systemically in cancer patients. In this review, we discuss the research findings and progress of IL-12 used in combination with other cancer treatment modalities. We describe different methods of IL-12 delivery, both systemic and local, and ultimately highlight the potential of an in situ vaccination approach for minimizing toxicities and providing antitumor efficacy. This review offers a basis for pursuing an in situ vaccine approach that may eventually allow IL-12 to be more readily integrated as an immunotherapy into the clinical treatment of cancers.


Asunto(s)
Vacunas contra el Cáncer , Interleucina-12 , Neoplasias , Animales , Humanos , Inmunoterapia/métodos , Interferón gamma , Interleucina-12/uso terapéutico , Ratones , Neoplasias/terapia
5.
Pediatr Blood Cancer ; 69(9): e29719, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35441784

RESUMEN

BACKGROUND: Minimal disease quantification may predict event-free survival (EFS) and overall survival (OS). METHODS: We evaluated mRNA expression of five neuroblastoma-associated genes (NB5 assay) in bone marrows (BM) of patients with newly diagnosed high-risk neuroblastoma who received consistent immunotherapy. mRNA expression of CHGA, DCX, DDC, PHOX2B, and TH genes in BM of 479 patients enrolled on the immunotherapy arm of Children's Oncology Group trials ANBL0032 and ANBL0931 was evaluated using real-time polymerase chain reaction (PCR)-based TaqMan low-density array. Results from end-consolidation and end-therapy were analyzed for association with five-year EFS/OS and patient and tumor characteristics. Tests of statistical significance were two-sided. RESULTS: NB5 assay detected neuroblastoma-related mRNA in 222 of 286 (77.6%) of BMs obtained at end-consolidation and 188 of 304 (61.8%) at end-therapy. Any mRNA level detected in end-therapy BM correlated with significantly worse EFS (57% [49.6%-63.7%] vs 73.0% [63.5%-80.4%]; P = 0.005), but not OS. Analysis limited to patients in complete response at end-therapy still found a significant difference in EFS with detectable versus not detectable NB5 assay results (58.9% [49.5%-67.1%] vs 76.6% [66.1%-84.2%]; P = 0.01). End-consolidation results did not correlate with EFS or OS. Multivariable analysis determined end-therapy NB5 assay BM results (P = 0.02), age at diagnosis (P = 0.002), and preconsolidation response (P = 0.02) were significantly associated with EFS independent of other clinical and biological parameters evaluated, including end-therapy response. CONCLUSIONS: If further validated in additional patient cohorts, the NB5 assay's ability to independently predict EFS from end-therapy could improve patient stratification for novel maintenance therapy trials after current end-therapy to improve outcome.


Asunto(s)
Médula Ósea , Neuroblastoma , Biomarcadores de Tumor/análisis , Médula Ósea/patología , Niño , Humanos , Lactante , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/terapia , Pronóstico , ARN Mensajero
6.
Cytotherapy ; 22(8): 450-457, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32536506

RESUMEN

BACKGROUND AIMS: Several methods to expand and activate (EA) NK cells ex vivo have been developed for the treatment of relapsed or refractory cancers. Infusion of fresh NK cells is generally preferred to the infusion of cryopreserved/thawed (C/T) NK cells because of concern that cryopreservation diminishes NK cell activity. However, there has been little head-to-head comparison of the functionality of fresh versus C/T NK cell products. METHODS: We evaluated activity of fresh and C/T EA NK cells generated by interleukin (IL)-15, IL-2 and CD137L expansion. RESULTS: Analysis of C/T NK cell products demonstrated decreased recovery of viable CD56+ cells, but the proportion of NK cells in the C/T EA NK cell product did not decrease compared with the fresh EA NK cell product. Fresh and C/T EA NK cells demonstrated increased granzyme B compared with NK cells pre-expansion, but only fresh EA NK cells showed increased NKG2D. Compared with fresh EA NK cells, cytotoxic ability of C/T EA NK cells was reduced, but C/T EA NK cells remained potently cytotoxic against tumor cells via both antibody-independent and antibody-dependent mechanisms within 4 h post-thaw. Fresh EA NK cells generated high levels of gamma interferon (IFN-γ), which was abrogated by JAK1/JAK2 inhibition with ruxolitinib, but C/T EA NK cells showed lower IFN-γ unaffected by JAK1/JAK2 inhibition. DISCUSSION: Usage of C/T EA NK cells may be an option to provide serial "boost" NK cell infusions from a single apheresis to maximize NK cell persistence and potentially improve NK-induced responses to refractory cancer.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Criopreservación , Células Asesinas Naturales/citología , Activación de Linfocitos/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citotoxicidad Inmunológica/efectos de los fármacos , Granzimas/metabolismo , Humanos , Interferón gamma/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Activación de Linfocitos/efectos de los fármacos , Recuento de Linfocitos , Subgrupos Linfocitarios/citología , Subgrupos Linfocitarios/efectos de los fármacos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Nitrilos , Pirazoles/farmacología , Pirimidinas
7.
Gynecol Oncol ; 152(3): 618-628, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30626487

RESUMEN

OBJECTIVE: MUC16, the mucin that contains the CA125 epitopes, suppresses the cytolytic responses of human NK cells and inhibits the efficacy of therapeutic antibodies. Here, we provide further evidence of the regulatory role of MUC16 on human and murine NK cells and macrophages. METHODS: Target cell cytolysis and doublet formation assays were performed to assess effects of MUC16 on human NK cells. The effect of MUC16 on ovarian tumor growth was determined in a mouse model by monitoring survival and ascites formation. Innate immune cells from spleens and peritoneal cavities of mice were isolated and stimulated in vitro with anti-CD40 antibody, lipopolysaccharide and IFN-γ and their ability to cytolyse MUC16 expressing and non-expressing cells was determined. RESULTS: We confirm that MUC16 inhibits cytolysis by human NK cells as well as the formation of NK-tumor conjugates. Mice implanted with MUC16-knockdown OVCAR-3 show >2-fold increase in survival compared to controls. Murine NK cells and macrophages are more efficient at lysing MUC16-knockdown cells. In vitro cytotoxicity assays with NK cells and macrophages isolated from mice stimulated with anti-CD40 antibody showed 2-3-fold increased activity against the MUC16-knockdown cells as compared to matching target cells expressing this mucin. Finally, knockdown of MUC16 increased the susceptibility of cancer cells to ADCC by murine splenocytes. CONCLUSIONS: For the first time, we demonstrate the immunoregulatory effects of MUC16 on murine NK cells and macrophages. Our study implies that the immunoregulatory role of MUC16 on murine NK cells and macrophages should be considered when examining the biology of MUC16 in mouse models.


Asunto(s)
Antígeno Ca-125/inmunología , Proteínas de la Membrana/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Inmunidad Innata , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Neoplasias Ováricas/inmunología
8.
J Immunol ; 198(4): 1575-1584, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28062694

RESUMEN

Most cancer immunotherapies include activation of either innate or adaptive immune responses. We hypothesized that the combined activation of both innate and adaptive immunity will result in better antitumor efficacy. We have previously shown the synergy of an agonistic anti-CD40 mAb (anti-CD40) and CpG-oligodeoxynucleotides in activating macrophages to induce tumor cell killing in mice. Separately, we have shown that a direct intratumoral injection of immunocytokine (IC), an anti-GD2 Ab linked to IL-2, can activate T and NK cells resulting in antitumor effects. We hypothesized that activation of macrophages with anti-CD40/CpG, and NK cells with IC, would cause innate tumor destruction, leading to increased presentation of tumor Ags and adaptive T cell activation; the latter could be further augmented by anti-CTLA-4 Ab to achieve tumor eradication and immunological memory. Using the mouse GD2+ B78 melanoma model, we show that anti-CD40/CpG treatment led to upregulation of T cell activation markers in draining lymph nodes. Anti-CD40/CpG + IC/anti-CTLA-4 synergistically induced regression of advanced s.c. tumors, resulting in cure of some mice and development of immunological memory against B78 and wild type B16 tumors. Although the antitumor effect of anti-CD40/CpG did not require T cells, the antitumor effect of IC/anti-CTLA-4 was dependent on T cells. The combined treatment with anti-CD40/CpG + IC/anti-CTLA-4 reduced T regulatory cells in the tumors and was effective against distant solid tumors and lung metastases. We suggest that a combination of anti-CD40/CpG and IC/anti-CTLA-4 should be developed for clinical testing as a potentially effective novel immunotherapy strategy.


Asunto(s)
Inmunidad Adaptativa , Anticuerpos Monoclonales/uso terapéutico , Inmunidad Innata , Inmunoterapia , Macrófagos/inmunología , Melanoma Experimental/terapia , Animales , Antígenos CD40/inmunología , Citotoxicidad Inmunológica , Memoria Inmunológica , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/inmunología , Linfocitos T/inmunología
9.
J Pediatr Hematol Oncol ; 41(3): 163-169, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30897608

RESUMEN

Neuroblastoma (NBL) is the most common extracranial solid tumor in pediatrics, yet overall survival is poor for high-risk cases. Immunotherapy regimens using a tumor-selective antidisialoganglioside (anti-GD2) monoclonal antibody (mAb) have been studied for several decades now, but have only recently been incorporated into standard of care treatment for patients with high-risk NBL with clear benefit. Here we review a brief history of anti-GD2-based immunotherapy, current areas of neuroblastoma research targeting GD2, and potential diagnostic and therapeutic uses targeting GD2.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Gangliósidos/inmunología , Inmunoterapia/métodos , Neuroblastoma/tratamiento farmacológico , Humanos , Terapia Molecular Dirigida , Patología Molecular , Riesgo
10.
Lancet Oncol ; 19(5): e240-e251, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29726389

RESUMEN

The practice of radiation oncology is primarily based on precise technical delivery of highly conformal, image-guided external beam radiotherapy or brachytherapy. However, systematic research efforts are being made to facilitate individualised radiation dose prescriptions on the basis of gene-expressssion profiles that reflect the radiosensitivity of tumour and normal tissue. This advance in precision radiotherapy should complement those benefits made in precision cancer medicine that use molecularly targeted agents and immunotherapies. The personalisation of cancer therapy, predicated largely on genomic interrogation, is facilitating the selection of therapies that are directed against driver mutations, aberrant cell signalling, tumour microenvironments, and genetic susceptibilities. With the increasing technical power of radiotherapy to safely increase local tumour control for many solid tumours, it is an opportune time to rigorously explore the potential benefits of combining radiotherapy with molecular targeted agents and immunotherapies to increase cancer survival outcomes. This theme provides the basis and foundation for this American Society for Radiation Oncology guideline on combining radiotherapy with molecular targeting and immunotherapy agents.


Asunto(s)
Antineoplásicos/uso terapéutico , Quimioradioterapia/normas , Factores Inmunológicos/uso terapéutico , Inmunoterapia/normas , Terapia Molecular Dirigida/normas , Neoplasias/terapia , Medicina de Precisión/normas , Oncología por Radiación/normas , Animales , Antineoplásicos/efectos adversos , Quimioradioterapia/efectos adversos , Consenso , Regulación Neoplásica de la Expresión Génica , Humanos , Factores Inmunológicos/efectos adversos , Inmunoterapia/efectos adversos , Terapia Molecular Dirigida/efectos adversos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Medicina de Precisión/efectos adversos , Tolerancia a Radiación/genética , Resultado del Tratamiento
11.
Cancer Immunol Immunother ; 67(10): 1647-1658, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30073390

RESUMEN

Phase I testing of the hu14.18-IL2 immunocytokine (IC) in melanoma patients showed immune activation, reversible toxicities, and a maximal tolerated dose of 7.5 mg/m2/day. Preclinical data in IC-treated tumor-bearing mice with low tumor burden documented striking antitumor effects. Patients with completely resectable recurrent stage III or stage IV melanoma were scheduled to receive 3 courses of IC at 6 mg/m2/day i.v. on days 1, 2 and 3 of each 28-day course. Patients were randomized to complete surgical resection either following neoadjuvant (Group A) or prior to adjuvant (Group B) IC course 1. Primary objectives were to: (1) evaluate histological evidence of anti-tumor activity and (2) evaluate recurrence-free survival (RFS) and OS. Twenty melanoma patients were randomized to Group A (11 patients) or B (9 patients). Two Group B patients did not receive IC due to persistent disease following surgery. Six of 18 IC-treated patients remained free of recurrence, with a median RFS of 5.7 months (95% confidence interval (CI) 1.8-not reached). The 24-month RFS rate was 38.9% (95% CI 17.5-60.0%). The median follow-up of surviving patients was 50.0 months (range: 31.8-70.4). The 24-month OS rate was 65.0% (95% CI 40.3-81.5%). Toxicities were similar to those previously reported. Exploratory tumor-infiltrating lymphocyte (TIL) analyses suggest prognostic value of TILs from Group A patients. Prolonged tumor-free survival was seen in some melanoma patients at high risk for recurrence who were treated with IC.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Interleucina-2/uso terapéutico , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Adulto , Anciano , Femenino , Estudios de Seguimiento , Humanos , Masculino , Melanoma/inmunología , Melanoma/patología , Persona de Mediana Edad , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Proyectos Piloto , Tasa de Supervivencia , Carga Tumoral , Adulto Joven
12.
Lancet Oncol ; 18(7): 946-957, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28549783

RESUMEN

BACKGROUND: Outcomes for children with relapsed and refractory neuroblastoma are dismal. The combination of irinotecan and temozolomide has activity in these patients, and its acceptable toxicity profile makes it an excellent backbone for study of new agents. We aimed to test the addition of temsirolimus or dinutuximab to irinotecan-temozolomide in patients with relapsed or refractory neuroblastoma. METHODS: For this open-label, randomised, phase 2 selection design trial of the Children's Oncology Group (COG; ANBL1221), patients had to have histological verification of neuroblastoma or ganglioneuroblastoma at diagnosis or have tumour cells in bone marrow with increased urinary catecholamine concentrations at diagnosis. Patients of any age were eligible at first designation of relapse or progression, or first designation of refractory disease, provided organ function requirements were met. Patients previously treated for refractory or relapsed disease were ineligible. Computer-based randomisation with sequence generation defined by permuted block randomisation (block size two) was used to randomly assign patients (1:1) to irinotecan and temozolomide plus either temsirolimus or dinutuximab, stratified by disease category, previous exposure to anti-GD2 antibody therapy, and tumour MYCN amplification status. Patients in both groups received oral temozolomide (100 mg/m2 per dose) and intravenous irinotecan (50 mg/m2 per dose) on days 1-5 of 21-day cycles. Patients in the temsirolimus group also received intravenous temsirolimus (35 mg/m2 per dose) on days 1 and 8, whereas those in the dinutuximab group received intravenous dinutuximab (17·5 mg/m2 per day or 25 mg/m2 per day) on days 2-5 plus granulocyte macrophage colony-stimulating factor (250 µg/m2 per dose) subcutaneously on days 6-12. Patients were given up to a maximum of 17 cycles of treatment. The primary endpoint was the proportion of patients achieving an objective (complete or partial) response by central review after six cycles of treatment, analysed by intention to treat. Patients, families, and those administering treatment were aware of group assignment. This study is registered with ClinicalTrials.gov, number NCT01767194, and follow-up of the initial cohort is ongoing. FINDINGS: Between Feb 22, 2013, and March 23, 2015, 36 patients from 27 COG member institutions were enrolled on this groupwide study. One patient was ineligible (alanine aminotransferase concentration was above the required range). Of the remaining 35 patients, 18 were randomly assigned to irinotecan-temozolomide-temsirolimus and 17 to irinotecan-temozolomide-dinutuximab. Median follow-up was 1·26 years (IQR 0·68-1·61) among all eligible participants. Of the 18 patients assigned to irinotecan-temozolomide-temsirolimus, one patient (6%; 95% CI 0·0-16·1) achieved a partial response. Of the 17 patients assigned to irinotecan-temozolomide-dinutuximab, nine (53%; 95% CI 29·2-76·7) had objective responses, including four partial responses and five complete responses. The most common grade 3 or worse adverse events in the temsirolimus group were neutropenia (eight [44%] of 18 patients), anaemia (six [33%]), thrombocytopenia (five [28%]), increased alanine aminotransferase (five [28%]), and hypokalaemia (four [22%]). One of the 17 patients assigned to the dinutuximab group refused treatment after randomisation; the most common grade 3 or worse adverse events in the remaining 16 patients evaluable for safety were pain (seven [44%] of 16), hypokalaemia (six [38%]), neutropenia (four [25%]), thrombocytopenia (four [25%]), anaemia (four [25%]), fever and infection (four [25%]), and hypoxia (four [25%]); one patient had grade 4 hypoxia related to therapy that met protocol-defined criteria for unacceptable toxicity. No deaths attributed to protocol therapy occurred. INTERPRETATION: Irinotecan-temozolomide-dinutuximab met protocol-defined criteria for selection as the combination meriting further study whereas irinotecan-temozolomide-temsirolimus did not. Irinotecan-temozolomide-dinutuximab shows notable anti-tumour activity in patients with relapsed or refractory neuroblastoma. Further evaluation of biomarkers in a larger cohort of patients might identify those most likely to respond to this chemoimmunotherapeutic regimen. FUNDING: National Cancer Institute.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Adolescente , Alanina Transaminasa/sangre , Anemia/inducido químicamente , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Camptotecina/administración & dosificación , Camptotecina/efectos adversos , Camptotecina/análogos & derivados , Niño , Preescolar , Dacarbazina/administración & dosificación , Dacarbazina/efectos adversos , Dacarbazina/análogos & derivados , Supervivencia sin Enfermedad , Fiebre/inducido químicamente , Ganglioneuroblastoma/diagnóstico por imagen , Ganglioneuroblastoma/tratamiento farmacológico , Ganglioneuroblastoma/genética , Amplificación de Genes , Factor Estimulante de Colonias de Granulocitos y Macrófagos/administración & dosificación , Humanos , Hipopotasemia/inducido químicamente , Hipoxia/inducido químicamente , Lactante , Infecciones/inducido químicamente , Irinotecán , Proteína Proto-Oncogénica N-Myc/genética , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/genética , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/genética , Neutropenia/inducido químicamente , Dolor/inducido químicamente , Criterios de Evaluación de Respuesta en Tumores Sólidos , Retratamiento , Sirolimus/administración & dosificación , Sirolimus/efectos adversos , Sirolimus/análogos & derivados , Tasa de Supervivencia , Temozolomida , Trombocitopenia/inducido químicamente
13.
J Transl Med ; 15(1): 223, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29100546

RESUMEN

Immunotherapies have emerged as one of the most promising approaches to treat patients with cancer. Recently, the entire medical oncology field has been revolutionized by the introduction of immune checkpoints inhibitors. Despite success in a variety of malignancies, responses typically only occur in a small percentage of patients for any given histology or treatment regimen. There are also concerns that immunotherapies are associated with immune-related toxicity as well as high costs. As such, identifying biomarkers to determine which patients are likely to derive clinical benefit from which immunotherapy and/or be susceptible to adverse side effects is a compelling clinical and social need. In addition, with several new immunotherapy agents in different phases of development, and approved therapeutics being tested in combination with a variety of different standard of care treatments, there is a requirement to stratify patients and select the most appropriate population in which to assess clinical efficacy. The opportunity to design parallel biomarkers studies that are integrated within key randomized clinical trials could be the ideal solution. Sample collection (fresh and/or archival tissue, PBMC, serum, plasma, stool, etc.) at specific points of treatment is important for evaluating possible biomarkers and studying the mechanisms of responsiveness, resistance, toxicity and relapse. This white paper proposes the creation of a network to facilitate the sharing and coordinating of samples from clinical trials to enable more in-depth analyses of correlative biomarkers than is currently possible and to assess the feasibilities, logistics, and collated interests. We propose a high standard of sample collection and storage as well as exchange of samples and knowledge through collaboration, and envisage how this could move forward using banked samples from completed studies together with prospective planning for ongoing and future clinical trials.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Humanos , Internacionalidad , Reproducibilidad de los Resultados , Estadística como Asunto
14.
Cancer Immunol Immunother ; 65(9): 1047-59, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27392940

RESUMEN

Infusion of allogeneic NK cells is a potential immunotherapy for both hematopoietic malignancies and solid tumors. Interactions between killer immunoglobulin-like receptors (KIR) on human NK cells and KIR-ligands on tumor cells influence the magnitude of NK function. To obtain sufficient numbers of activated NK cells for infusion, one potent method uses cells from the K562 human erythroleukemia line that have been transfected to express activating 41BB ligand (41BBL) and membrane-bound interleukin 15 (mbIL15). The functional importance of KIRs on ex vivo expanded NK cells has not been studied in detail. We found that after a 12-day co-culture with K562-mbIL15-41BBL cells, expanded NK cells maintained inhibition specificity and prior in vivo licensing status determined by KIR/KIR-ligand interactions. Addition of an anti-CD20 antibody (rituximab) induced NK-mediated antibody-dependent cellular cytotoxicity and augmented killing of CD20+ target cells. However, partial inhibition induced by KIR/KIR-ligand interactions persisted. Finally, we found that extended co-cultures of NK cells with stimulatory cells transduced to express various KIR-ligands modified both the inhibitory and activating KIR repertoires of the expanded NK cell product. These studies demonstrate that the licensing interactions known to occur during NK ontogeny also influence NK cell function following NK expansion ex vivo with HLA-null stimulatory cells.


Asunto(s)
Antígenos HLA-C/inmunología , Células Asesinas Naturales/inmunología , Receptores KIR/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Línea Celular Tumoral , Técnicas de Genotipaje , Humanos , Células K562 , Ligandos , Transfección
15.
Cancer Immunol Immunother ; 65(8): 897-907, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27207605

RESUMEN

Effective uptake of tumor cell-derived antigens by antigen-presenting cells is achieved pre-clinically by in situ labeling of tumor with α-gal glycolipids that bind the naturally occurring anti-Gal antibody. We evaluated toxicity and feasibility of intratumoral injections of α-gal glycolipids as an autologous tumor antigen-targeted immunotherapy in melanoma patients (pts). Pts with unresectable metastatic melanoma, at least one cutaneous, subcutaneous, or palpable lymph node metastasis, and serum anti-Gal titer ≥1:50 were eligible for two intratumoral α-gal glycolipid injections given 4 weeks apart (cohort I: 0.1 mg/injection; cohort II: 1.0 mg/injection; cohort III: 10 mg/injection). Monitoring included blood for clinical, autoimmune, and immunological analyses and core tumor biopsies. Treatment outcome was determined 8 weeks after the first α-gal glycolipid injection. Nine pts received two intratumoral injections of α-gal glycolipids (3 pts/cohort). Injection-site toxicity was mild, and no systemic toxicity or autoimmunity could be attributed to the therapy. Two pts had stable disease by RECIST lasting 8 and 7 months. Tumor nodule biopsies revealed minimal to no change in inflammatory infiltrate between pre- and post-treatment biopsies except for 1 pt (cohort III) with a post-treatment inflammatory infiltrate. Two and four weeks post-injection, treated nodules in 5 of 9 pts exhibited tumor cell necrosis without neutrophilic or lymphocytic inflammatory response. Non-treated tumor nodules in 2 of 4 evaluable pts also showed necrosis. Repeated intratumoral injections of α-gal glycolipids are well tolerated, and tumor necrosis was seen in some tumor nodule biopsies after tumor injection with α-gal glycolipids.


Asunto(s)
Glucolípidos/metabolismo , Inyecciones Intralesiones/métodos , Melanoma/tratamiento farmacológico , Adulto , Anciano , Estudios de Factibilidad , Femenino , Humanos , Inmunoterapia , Masculino , Persona de Mediana Edad
16.
Cancer Immunol Immunother ; 65(12): 1523-1532, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27695964

RESUMEN

NK cells play a role in many cancer immunotherapies. NK cell activity is tightly regulated by killer immunoglobulin-like receptor (KIR) and KIR-ligand interactions. Inhibitory KIR-ligands have been identified as HLA molecules, while activating KIR-ligands are largely unknown. Individuals that have not inherited the corresponding KIR-ligand for at least one inhibitory KIR gene are termed the "KIR-ligand missing" genotype, and they are thought to have a subset of NK cells that express inhibitory KIRs for which the corresponding KIR-ligand is missing on autologous tissue, and thus will not be inhibited through KIR-ligand recognition. In some settings where an anticancer immunotherapeutic effect is likely mediated by NK cells, individuals with a KIR-ligand missing genotype have shown improved clinical outcome compared to individuals with an "all KIR-ligands present" genotype. In addition, patients receiving hematopoietic stem cell transplants for leukemia may do better if their donor has more activating KIR genes (i.e., KIR haplotype-B). In a recent multi-institution clinical trial of patients with metastatic renal cell carcinoma receiving high-dose IL2 (HD-IL2), 25 % of patients showed a complete or partial tumor response to this therapy. We genotyped KIR and KIR-ligand genes for these patients (n = 107) and tested whether KIR/KIR-ligand genotypes correlated with patient clinical outcomes. In these analyses, we did not find any significant association of KIR/KIR-ligand genotype (either KIR-ligand missing or the presence of KIR haplotype-B) with patient outcome in response to the HD-IL2 therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Renales/genética , Interleucina-2/uso terapéutico , Receptores KIR/genética , Adulto , Anciano , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Carcinoma de Células Renales/patología , Genotipo , Humanos , Interleucina-2/farmacología , Ligandos , Persona de Mediana Edad
17.
J Pediatr Hematol Oncol ; 37(2): 79-93, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25590232

RESUMEN

The past decade has seen several anticancer immunotherapeutic strategies transition from "promising preclinical models" to treatments with proven clinical activity or benefit. In 2013, the journal Science selected the field of Cancer Immunotherapy as the overall number-1 breakthrough for the year in all of scientific research. In the setting of cancer immunotherapy for adult malignancies, many of these immunotherapy strategies have relied on the cancer patient's endogenous antitumor T-cell response. Although much promising research in pediatric oncology is similarly focused on T-cell reactivity, several pediatric malignancies themselves, or the chemo-radiotherapy used to achieve initial responses, can be associated with profound immune suppression, particularly of the T-cell system. A separate component of the immune system, also able to mediate antitumor effects and less suppressed by conventional cancer treatment, is the NK-cell system. In recent years, several distinct immunotherapeutic approaches that rely on the activity of NK cells have moved from preclinical development into clinical testing, and some have shown clear antitumor benefit. This review provides an overview of NK cell-based immunotherapy efforts that are directed toward childhood malignancies, with an emphasis on protocols that are already in clinical testing.


Asunto(s)
Inmunoterapia , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Adulto , Niño , Humanos , Pronóstico
18.
Chembiochem ; 15(10): 1393-8, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24909955

RESUMEN

Immunotherapy is a promising strategy for targeting tumors. One emerging approach is to harness the immune effector functions of natural antibodies to destroy tumor cells. Dinitrophenyl (DNP) and the galactose-α-1,3-galactose (αGal) epitope are two haptens that bind endogenous antibodies. One potential alternative is the deoxysugar L-rhamnose. We compared these candidates by using a biosensor assay to evaluate human sera for endogenous antibody concentration, antibody isotype distribution, and longevity of antibody-hapten interactions. Antibodies recognizing α-rhamnose are of equal or greater abundance and affinity as those recognizing αGal. Moreover, both rhamnose and αGal epitopes are more effective than DNP at recruiting the IgG antibody subtype. Exposure of tumor cells to rhamnose-bearing glycolipids and human serum promotes complement-mediated cytotoxicity. These data highlight the utility of α-rhamnose-containing glycoconjugates to direct the immune system to target cells.


Asunto(s)
Anticuerpos/inmunología , Glicoconjugados/química , Glicoconjugados/farmacología , Neoplasias/terapia , Ramnosa/análogos & derivados , Ramnosa/farmacología , Línea Celular Tumoral , Galactosa/química , Galactosa/inmunología , Glicoconjugados/inmunología , Haptenos/química , Haptenos/inmunología , Humanos , Inmunoglobulina G/inmunología , Inmunoterapia , Neoplasias/inmunología , Ramnosa/inmunología , Resonancia por Plasmón de Superficie
19.
J Immunol ; 189(5): 2656-64, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22844125

RESUMEN

hu14.18-IL-2 (IC) is an immunocytokine consisting of human IL-2 linked to hu14.18 mAb, which recognizes the GD2 disialoganglioside. Phase 2 clinical trials of i.v. hu14.18-IL-2 (i.v.-IC) in neuroblastoma and melanoma are underway and have already demonstrated activity in neuroblastoma. We showed previously that intratumoral hu14.18-IL-2 (IT-IC) results in enhanced antitumor activity in mouse models compared with i.v.-IC. The studies presented in this article were designed to determine the mechanisms involved in this enhanced activity and to support the future clinical testing of intratumoral administration of immunocytokines. Improved survival and inhibition of growth of both local and distant tumors were observed in A/J mice bearing s.c. NXS2 neuroblastomas treated with IT-IC compared with those treated with i.v.-IC or control mice. The local and systemic antitumor effects of IT-IC were inhibited by depletion of NK cells or T cells. IT-IC resulted in increased NKG2D receptors on intratumoral NKG2A/C/E⁺ NKp46⁺ NK cells and NKG2A/C/E⁺ CD8⁺ T cells compared with control mice or mice treated with i.v.-IC. NKG2D levels were augmented more in tumor-infiltrating lymphocytes compared with splenocytes, supporting the localized nature of the intratumoral changes induced by IT-IC treatment. Prolonged retention of IC at the tumor site was seen with IT-IC compared with i.v.-IC. Overall, IT-IC resulted in increased numbers of activated T and NK cells within tumors, better IC retention in the tumor, enhanced inhibition of tumor growth, and improved survival compared with i.v.-IC.


Asunto(s)
Antineoplásicos/uso terapéutico , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Neuroblastoma/inmunología , Neuroblastoma/terapia , Proteínas Recombinantes de Fusión/uso terapéutico , Subgrupos de Linfocitos T/inmunología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Inyecciones Intralesiones , Interleucina-2/administración & dosificación , Interleucina-2/metabolismo , Interleucina-2/uso terapéutico , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Ratones , Ratones Endogámicos A , Ratones Endogámicos C57BL , Neuroblastoma/patología , Distribución Aleatoria , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/metabolismo , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología
20.
Future Oncol ; 10(9): 1659-78, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25145434

RESUMEN

Novel immune-based therapies are becoming available as additions to, and in some cases as alternatives to, the traditional treatment modalities such as chemotherapy, surgery and radiation that have improved outcomes for childhood cancer for decades. In this article, we will discuss what immunotherapies are being tested in the clinic, barriers to widespread application, and the future of immuno-oncology for childhood cancer. While in many cases, these therapies have shown dramatic responses in the setting of refractory or relapsed cancer, much remains to be learned about how to integrate these therapies into existing upfront regimens. The progress and challenges of developing immunotherapies for childhood cancer in a timely and cost-effective fashion will be discussed.


Asunto(s)
Inmunoterapia , Neoplasias/terapia , Vacunas contra el Cáncer , Niño , Humanos , Neoplasias/inmunología , Pediatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA