Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(30): e2123065119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858407

RESUMEN

SARS-CoV-2, the causative agent of the COVID-19 pandemic, undergoes continuous evolution, highlighting an urgent need for development of novel antiviral therapies. Here we show a quantitative mass spectrometry-based succinylproteomics analysis of SARS-CoV-2 infection in Caco-2 cells, revealing dramatic reshape of succinylation on host and viral proteins. SARS-CoV-2 infection promotes succinylation of several key enzymes in the TCA, leading to inhibition of cellular metabolic pathways. We demonstrated that host protein succinylation is regulated by viral nonstructural protein (NSP14) through interaction with sirtuin 5 (SIRT5); overexpressed SIRT5 can effectively inhibit virus replication. We found succinylation inhibitors possess significant antiviral effects. We also found that SARS-CoV-2 nucleocapsid and membrane proteins underwent succinylation modification, which was conserved in SARS-CoV-2 and its variants. Collectively, our results uncover a regulatory mechanism of host protein posttranslational modification and cellular pathways mediated by SARS-CoV-2, which may become antiviral drug targets against COVID-19.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Interacciones Huésped-Patógeno , Terapia Molecular Dirigida , Procesamiento Proteico-Postraduccional , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/metabolismo , COVID-19/virología , Células CACO-2 , Exorribonucleasas/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Sirtuinas/metabolismo , Succinatos/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
2.
Hepatology ; 78(5): 1433-1447, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36800849

RESUMEN

BACKGROUND AND AIMS: Liver fibrosis is a leading indicator for increased mortality and long-term comorbidity in NASH. Activation of HSCs and excessive extracellular matrix production are the hallmarks of liver fibrogenesis. Tyrosine kinase receptor (TrkB) is a multifunctional receptor that participates in neurodegenerative disorders. However, paucity of literature is available about TrkB function in liver fibrosis. Herein, the regulatory network and therapeutic potential of TrkB were explored in the progression of hepatic fibrosis. METHODS AND RESULTS: The protein level of TrkB was decreased in mouse models of CDAHFD feeding or carbon tetrachloride-induced hepatic fibrosis. TrkB suppressed TGF-ß-stimulated proliferation and activation of HSCs in 3-dimensional liver spheroids and significantly repressed TGF-ß/SMAD signaling pathway either in HSCs or in hepatocytes. The cytokine, TGF-ß, boosted Nedd4 family interacting protein-1 (Ndfip1) expression, promoting the ubiquitination and degradation of TrkB through E3 ligase Nedd4-2. Moreover, carbon tetrachloride intoxication-induced hepatic fibrosis in mouse models was reduced by adeno-associated virus vector serotype 6 (AAV6)-mediated TrkB overexpression in HSCs. In addition, in murine models of CDAHFD feeding and Gubra-Amylin NASH (GAN), fibrogenesis was reduced by adeno-associated virus vector serotype 8 (AAV8)-mediated TrkB overexpression in hepatocytes. CONCLUSION: TGF-ß stimulated TrkB degradation through E3 ligase Nedd4-2 in HSCs. TrkB overexpression inhibited the activation of TGF-ß/SMAD signaling and alleviated the hepatic fibrosis both in vitro and in vivo . These findings demonstrate that TrkB could be a significant suppressor of hepatic fibrosis and confer a potential therapeutic target in hepatic fibrosis.


Asunto(s)
Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Factor de Crecimiento Transformador beta , Animales , Ratones , Tetracloruro de Carbono , Células Estrelladas Hepáticas/metabolismo , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Tirosina Quinasas Receptoras , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo
3.
J Nanobiotechnology ; 22(1): 392, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965606

RESUMEN

Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), remains a highly lethal malignancy with limited therapeutic options and a dismal prognosis. By targeting the underlying molecular abnormalities responsible for PDAC development and progression, gene therapy offers a promising strategy to overcome the challenges posed by conventional radiotherapy and chemotherapy. This study sought to explore the therapeutic potential of small activating RNAs (saRNAs) specifically targeting the CCAAT/enhancer-binding protein alpha (CEBPA) gene in PDAC. To overcome the challenges associated with saRNA delivery, tetrahedral framework nucleic acids (tFNAs) were rationally engineered as nanocarriers. These tFNAs were further functionalized with a truncated transferrin receptor aptamer (tTR14) to enhance targeting specificity for PDAC cells. The constructed tFNA-based saRNA formulation demonstrated exceptional stability, efficient saRNA release ability, substantial cellular uptake, biocompatibility, and nontoxicity. In vitro experiments revealed successful intracellular delivery of CEBPA-saRNA utilizing tTR14-decorated tFNA nanocarriers, resulting in significant activation of tumor suppressor genes, namely, CEBPA and its downstream effector P21, leading to notable inhibition of PDAC cell proliferation. Moreover, in a mouse model of PDAC, the tTR14-decorated tFNA-mediated delivery of CEBPA-saRNA effectively upregulated the expression of the CEBPA and P21 genes, consequently suppressing tumor growth. These compelling findings highlight the potential utility of saRNA delivered via a designed tFNA nanocarrier to induce the activation of tumor suppressor genes as an innovative therapeutic approach for PDAC.


Asunto(s)
Aptámeros de Nucleótidos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores de Transferrina , Animales , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Receptores de Transferrina/metabolismo , Ratones , Línea Celular Tumoral , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proliferación Celular/efectos de los fármacos , Terapia Genética/métodos , ARN Interferente Pequeño/farmacología , Ratones Desnudos
4.
J Appl Microbiol ; 134(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37113029

RESUMEN

AIMS: The main purpose of this study was to study the therapeutical effect of oroxylin A glucuronide (OAG) on methicillin-resistant Staphylococcus aureus (MRSA). METHODS AND RESULTS: By substrate peptide reaction-based fluorescence resonance energy transfer (FRET) screening, we identified that OAG was an efficient inhibitor of Sortase A (SrtA) with an IC50 of 45.61 µg mL-1, and achieved efficacy in the treatment of Staphylococcus aureus (S. aureus) infections. We further demonstrated that OAG inhibited the adhesion of the S. aureus to fibrinogen, the surface protein A anchoring and diminished biofilm formation. Results obtained from fluorescence quenching assay elucidated a direct interaction between OAG and SrtA. Employing molecular dynamics simulations, we proved that OAG binds to the binding sites of R197, G192, E105, and V168 in the SrtA. Notably, OAG exhibited a robust therapeutic effect in a MRSA-induced pneumonia model. CONCLUSIONS: We identified that OAG as a novel class of reversible inhibitors of SrtA, combats MRSA-induced Infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/metabolismo , Staphylococcus aureus , Glucurónidos/farmacología , Proteínas Bacterianas/metabolismo
5.
J Hepatol ; 75(6): 1420-1433, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34453962

RESUMEN

BACKGROUND & AIMS: Therapeutic targeting of injuries that require transient restoration of proteins by mRNA delivery is an attractive approach that, until recently, has remained poorly explored. In this study, we examined the therapeutic utility of mRNA delivery for liver fibrosis and cirrhosis. Specifically, we aimed to demonstrate the therapeutic efficacy of human hepatocyte nuclear factor alpha (HNF4A) mRNA in mouse models of fibrosis and cirrhosis. METHODS: We investigated restoration of hepatocyte functions by HNF4A mRNA transfection in vitro, and analyzed the attenuation of liver fibrosis and cirrhosis in multiple mouse models, by delivering hepatocyte-targeted biodegradable lipid nanoparticles (LNPs) encapsulating HNF4A mRNA. To identify potential mechanisms of action, we performed microarray-based gene expression profiling, single-cell RNA sequencing, and chromatin immunoprecipitation. We used primary liver cells and human liver buds for additional functional validation. RESULTS: Expression of HNF4A mRNA led to restoration of the metabolic activity of fibrotic primary murine and human hepatocytes in vitro. Repeated in vivo delivery of LNP-encapsulated HNF4A mRNA induced a robust inhibition of fibrogenesis in 4 independent mouse models of hepatotoxin- and cholestasis-induced liver fibrosis. Mechanistically, we discovered that paraoxonase 1 is a direct target of HNF4A and it contributes to HNF4A-mediated attenuation of liver fibrosis via modulation of liver macrophages and hepatic stellate cells. CONCLUSION: Collectively, our findings provide the first direct preclinical evidence of the applicability of HNF4A mRNA therapeutics for the treatment of fibrosis in the liver. LAY SUMMARY: Liver fibrosis and cirrhosis remain unmet medical needs and contribute to high mortality worldwide. Herein, we take advantage of a promising therapeutic approach to treat liver fibrosis and cirrhosis. We demonstrate that restoration of a key gene, HNF4A, via mRNA encapsulated in lipid nanoparticles decreased injury in multiple mouse models of fibrosis and cirrhosis. Our study provides proof-of-concept that mRNA therapy is a promising strategy for reversing liver fibrosis and cirrhosis.


Asunto(s)
Factor Nuclear 4 del Hepatocito/farmacología , Cirrosis Hepática/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Factor Nuclear 4 del Hepatocito/uso terapéutico , Ratones , ARN Mensajero/farmacología , ARN Mensajero/uso terapéutico
6.
Brief Bioinform ; 20(1): 102-109, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28968662

RESUMEN

Adenosine-to-inosine (A-to-I) editing by adenosine deaminase acting on the RNA (ADAR) proteins is one of the most frequent modifications during post- and co-transcription. To facilitate the assignment of biological functions to specific editing sites, we designed an automatic online platform to annotate A-to-I RNA editing sites in pre-mRNA splicing signals, microRNAs (miRNAs) and miRNA target untranslated regions (3' UTRs) from human (Homo sapiens) high-throughput sequencing data and predict their effects based on large-scale bioinformatic analysis. After analysing plenty of previously reported RNA editing events and human normal tissues RNA high-seq data, >60 000 potentially effective RNA editing events on functional genes were found. The RNA Editing Plus platform is available for free at https://www.rnaeditplus.org/, and we believe our platform governing multiple optimized methods will improve further studies of A-to-I-induced editing post-transcriptional regulation.


Asunto(s)
Adenosina Desaminasa/metabolismo , Edición de ARN , Proteínas de Unión al ARN/metabolismo , Programas Informáticos , Regiones no Traducidas 3' , Adenosina/genética , Adenosina/metabolismo , Empalme Alternativo/genética , Secuencia de Bases , Biología Computacional , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Femenino , Ontología de Genes , Humanos , Inosina/genética , Inosina/metabolismo , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Mutación Missense , Edición de ARN/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Análisis de Secuencia de ARN/estadística & datos numéricos , Máquina de Vectores de Soporte , Distribución Tisular
7.
J Transl Med ; 19(1): 347, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34389031

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAM) are immunosuppressive cells that contribute to impaired anti-cancer immunity. Iron plays a critical role in regulating macrophage function. However, it is still elusive whether it can drive the functional polarization of macrophages in the context of cancer and how tumor cells affect the iron-handing properties of TAM. In this study, using hepatocellular carcinoma (HCC) as a study model, we aimed to explore the effect and mechanism of reduced ferrous iron in TAM. METHODS: TAM from HCC patients and mouse HCC tissues were collected to analyze the level of ferrous iron. Quantitative real-time PCR was used to assess M1 or M2 signature genes of macrophages treated with iron chelators. A co-culture system was established to explore the iron competition between macrophages and HCC cells. Flow cytometry analysis was performed to determine the holo-transferrin uptake of macrophages. HCC samples from The Cancer Genome Atlas (TCGA) were enrolled to evaluate the prognostic value of transferrin receptor (TFRC) and its relevance to tumor-infiltrating M2 macrophages. RESULTS: We revealed that ferrous iron in M2-like TAM is lower than that in M1-like TAM. In vitro analysis showed that loss of iron-induced immunosuppressive M2 polarization of mouse macrophages. Further experiments showed that TFRC, the primary receptor for transferrin-mediated iron uptake, was overexpressed on HCC cells but not TAM. Mechanistically, HCC cells competed with macrophages for iron to upregulate the expression of M2-related genes via induction of HIF-1α, thus contributing to M2-like TAM polarization. We further clarified the oncogenic role of TFRC in HCC patients by TCGA. TFRC is significantly increased in varieties of malignancies, including HCC, and HCC patients with high TFRC levels have considerably shortened overall survival. Also, TFRC is shown to be positively related to tumor-infiltrating M2 macrophages. CONCLUSIONS: Collectively, we identified iron starvation through TFRC-mediated iron competition drives functional immunosuppressive polarization of TAM, providing new insight into the interconnection between iron metabolism and tumor immunity.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Línea Celular Tumoral , Humanos , Hierro , Ratones , Macrófagos Asociados a Tumores
8.
Gut ; 69(6): 1104-1115, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31767630

RESUMEN

OBJECTIVE: Liver fibrosis and cirrhosis resulting from chronic liver injury represent a major healthcare burden worldwide. Growth differentiation factor (GDF) 11 has been recently investigated for its role in rejuvenation of ageing organs, but its role in chronic liver diseases has remained unknown. Here, we investigated the expression and function of GDF11 in liver fibrosis, a common feature of most chronic liver diseases. DESIGN: We analysed the expression of GDF11 in patients with liver fibrosis, in a mouse model of liver fibrosis and in hepatic stellate cells (HSCs) as well as in other liver cell types. The functional relevance of GDF11 in toxin-induced and cholestasis-induced mouse models of liver fibrosis was examined by in vivo modulation of Gdf11 expression using adeno-associated virus (AAV) vectors. The effect of GDF11 on leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5)+ liver progenitor cells was studied in mouse and human liver organoid culture. Furthermore, in vivo depletion of LGR5+ cells was induced by injecting AAV vectors expressing diptheria toxin A under the transcriptional control of Lgr5 promoter. RESULTS: We showed that the expression of GDF11 is upregulated in patients with liver fibrosis and in experimentally induced murine liver fibrosis models. Furthermore, we found that therapeutic application of GDF11 mounts a protective response against fibrosis by increasing the number of LGR5+ progenitor cells in the liver. CONCLUSION: Collectively, our findings uncover a protective role of GDF11 during liver fibrosis and suggest a potential application of GDF11 for the treatment of chronic liver disease.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Células Madre/metabolismo , Animales , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Flujo Génico , Humanos , Hibridación in Situ , Hígado/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Regulación hacia Arriba
9.
J Cell Biochem ; 121(4): 2938-2949, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31692072

RESUMEN

BACKGROUND: Calcium-binding tyrosine phosphorylation-regulated protein (CABYR) is a group of isoforms produced by alternative splicing and is overexpressed in human malignancies including hepatocellular carcinoma (HCC). However, the prognostic value and biological functions of its major protein isoforms, named CABYR-a/b (combined CABYR-a and CABYR-b), in HCC remain to be established. METHODS: CABYR-a/b expression was detected in HCC tissues and cell lines by quantitative real-time polymerase chain reaction and Western blot analysis. The correlation of CABYR-a/b expression with clinical characteristics and its prognosis impact were determined by statistical analysis. Finally, the biological functions and molecular mechanism of CABYR-a/b were also investigated using molecular biology approaches. RESULTS: The present research found that CABYR-a/b was markedly elevated in HCC specimens and cell lines. Upregulated CABYR-a/b level had positive association with tumor size and differentiation in patients. Moreover, cases with elevated CABYR-a/b level had poorer overall survival (OS) and disease-free survival (DFS) than those with reduced CABYR-a/b level. Multivariate analysis and prognostic nomograms demonstrated that CABYR-a/b overexpression was an independent predictive indicator for OS and DFS. The calibration curve for the odds of OS and DFS demonstrated that the prediction by nomograms was in excellent accordance with actual situation. CABYR-a/b downregulation suppressed cell proliferation and induced G1-phase arrest via decreasing cyclin D1 and cyclin dependent kinase 4, while promoted apoptosis by reducing B-cell lymphoma 2 (Bcl-2) and increasing Bcl-2-associated death promoter. CONCLUSION: Our research indicates that CABYR-a/b exerts an oncogenic effect on HCC development and may become a new prognostic indicator for patients with HCC.


Asunto(s)
Apoptosis , Proteínas de Unión al Calcio , Calcio/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Tirosina/química , Anciano , Empalme Alternativo , Biomarcadores de Tumor/metabolismo , Proteínas de Unión al Calcio/metabolismo , Carcinoma Hepatocelular/diagnóstico , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/diagnóstico , Masculino , Persona de Mediana Edad , Fosforilación , Pronóstico , Unión Proteica , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/metabolismo , Resultado del Tratamiento
10.
J Hepatol ; 72(5): 909-923, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31899205

RESUMEN

BACKGROUND & AIMS: Mitochondrial dysfunction and subsequent metabolic deregulation are commonly observed in cancers, including hepatocellular carcinoma (HCC). When mitochondrial function is impaired, reductive glutamine metabolism is a major cellular carbon source for de novo lipogenesis to support cancer cell growth. The underlying regulators of reductively metabolized glutamine in mitochondrial dysfunction are not completely understood in tumorigenesis. METHODS: We systematically investigated the role of oxoglutarate dehydrogenase-like (OGDHL), one of the rate-limiting components of the key mitochondrial multi-enzyme OGDH complex (OGDHC), in the regulation of lipid metabolism in hepatoma cells and mouse xenograft models. RESULTS: Lower expression of OGDHL was associated with advanced tumor stage, significantly worse survival and more frequent tumor recurrence in 3 independent cohorts totaling 681 postoperative HCC patients. Promoter hypermethylation and DNA copy deletion of OGDHL were independently correlated with reduced OGDHL expression in HCC specimens. Additionally, OGDHL overexpression significantly inhibited the growth of hepatoma cells in mouse xenografts, while knockdown of OGDHL promoted proliferation of hepatoma cells. Mechanistically, OGDHL downregulation upregulated the α-ketoglutarate (αKG):citrate ratio by reducing OGDHC activity, which subsequently drove reductive carboxylation of glutamine-derived αKG via retrograde tricarboxylic acid cycling in hepatoma cells. Notably, silencing of OGDHL activated the mTORC1 signaling pathway in an αKG-dependent manner, inducing transcription of enzymes with key roles in de novo lipogenesis. Meanwhile, metabolic reprogramming in OGDHL-negative hepatoma cells provided an abundant supply of NADPH and glutathione to support the cellular antioxidant system. The reduction of reductive glutamine metabolism through OGDHL overexpression or glutaminase inhibitors sensitized tumor cells to sorafenib, a molecular-targeted therapy for HCC. CONCLUSION: Our findings established that silencing of OGDHL contributed to HCC development and survival by regulating glutamine metabolic pathways. OGDHL is a promising prognostic biomarker and therapeutic target for HCC. LAY SUMMARY: Hepatocellular carcinoma (HCC) is one of the most prevalent tumors worldwide and is correlated with a high mortality rate. In patients with HCC, lower expression of the enzyme OGDHL is significantly associated with worse survival. Herein, we show that silencing of OGDHL induces lipogenesis and influences the chemosensitization effect of sorafenib in liver cancer cells by reprogramming glutamine metabolism. OGDHL is a promising prognostic biomarker and potential therapeutic target in OGDHL-negative liver cancer.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Silenciador del Gen , Complejo Cetoglutarato Deshidrogenasa/deficiencia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transducción de Señal/genética , Adulto , Anciano , Animales , Antineoplásicos/administración & dosificación , Biomarcadores de Tumor/deficiencia , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Estudios de Cohortes , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Glutamina/metabolismo , Humanos , Complejo Cetoglutarato Deshidrogenasa/genética , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Transducción de Señal/efectos de los fármacos , Sorafenib/administración & dosificación , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Ann Surg Oncol ; 27(5): 1546-1557, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32157528

RESUMEN

BACKGROUND: The mechanistic target of rapamycin (mTOR) pathway, containing mTOR complex 1 (mTORC1) and mTORC2, is dysregulated in multiple cancers, including hepatocellular carcinoma (HCC). Mammalian lethal with sec-13 protein 8 (mLST8) is a shared constituent of both mTORC1 and mTORC2, yet little is known regarding its role in HCC development. METHODS: mLST8 expression was detected in a total of 186 pairs of HCC and adjacent non-tumor specimens. The correlation between mLST8 level and clinicopathological features or prognostic significance were analyzed. The role of mLST8 on biological functions was also preliminarily studied. RESULTS: The study revealed that the mLST8 level was dramatically higher in HCC specimens than in adjacent non-tumor specimens. mLST8 overexpression positively correlated with tumor size, differentiation, and vessel invasion. Cases with elevated mLST8 level had more unfavorable overall survival (OS) and disease-free survival (DFS) than those with downregulated mLST8 level. Multivariate analysis demonstrated that mLST8 upregulation was an independent predictive marker for OS and DFS. Calibration curves from nomogram models indicated an excellent coherence between nomogram prediction and actual situation. Decision curve analysis proved that mLST8-based nomograms presented much higher predictive accuracy when compared with conventional clinical staging systems. Mechanistically, mLST8 enhanced cell proliferation and invasion through the AKT (protein kinase B) pathway. CONCLUSIONS: Our study demonstrates that mLST8 exerts an oncogenic role in HCC and may become a promising prognostic biomarker and therapeutic target for HCC patients.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Homóloga LST8 de la Proteína Asociada al mTOR/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Nomogramas , Pronóstico , Regulación hacia Arriba , Adulto Joven
12.
Arch Toxicol ; 92(3): 1133-1149, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29209748

RESUMEN

The metabolic activity of hepatocytes is a central prerequisite for drug activity and a key element in drug-drug interaction. This central role in metabolism largely depends on the activity of the cytochrome P450 (CYP450) enzyme family, which is not only dependent on liver cell maturation but is also controlled in response to drug and chemical exposure. Here, we report the use of VividDye fluorogenic CYP450 substrates to directly measure and continuously monitor metabolic activity in living hepatocytes. We observed time- and dose-dependent correlation in response to established and putative CYP450 inducers acting through the aryl hydrocarbon receptor and drug combinations. Using repetitive addition of VividDye fluorogenic substrate on a daily basis, we demonstrated the new application of VividDye for monitoring the maturation and dedifferentiation of hepatic cells. Despite a lack of high specificity for individual CYP450 isoenzymes, our approach enables continuous monitoring of metabolic activity in living cells with no need to disrupt cultivation. Our assay can be integrated in in vitro liver-mimetic models for on-line monitoring and thus should enhance the reliability of these tissue model systems.


Asunto(s)
Bioensayo/métodos , Compuestos Cromogénicos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/enzimología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Bioensayo/instrumentación , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Sistema Enzimático del Citocromo P-450/análisis , Inducción Enzimática/efectos de los fármacos , Colorantes Fluorescentes/análisis , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Humanos , Indoles/farmacología , Dispositivos Laboratorio en un Chip , Masculino , Ratones Endogámicos C57BL , Oximas , Dibenzodioxinas Policloradas/farmacología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
13.
Tohoku J Exp Med ; 245(2): 89-98, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899182

RESUMEN

Hepatocellular carcinoma (HCC) remains a major health problem for delayed diagnosis, inefficient surveillance and poor prognosis. Recent studies have indicated that non-coding RNAs contribute to the development of new strategies for diagnosis and treatment of HCC. In the present study, we employed 18 pairs of HCC and matched non-tumor tissues for the identification of differentially expressed microRNAs (miRNAs) in HCC, among which 7 paired specimens were selected randomly for microarray detection. Totally, twenty-three miRNAs were screened out to have statistically significant differences with the threshold of P < 0.01 and fold-change ≥ 2.0 or ≤ 0.5 using miRNA microarray. In the validation stage, two miRNAs exhibited higher expression levels in the HCC tissues compared with those in the matched non-tumor tissues, whereas the expression levels of ten miRNAs were lower in the HCC tissues than those in the matched non-tumor tissues. In further analysis, eight miRNAs, including miR-4270, miR-125b-5p, miR-199a-3p, miR-10a-5p, miR-424-5p, miR-195-5p, miR-106b-5p and miR-3651, were retained, when another constraint about the signal intensity of microarray probes was established. Among these miRNAs, our study was the first to show the higher expression level of miR-3651 and the lower expression level of miR-4270 in HCC. The areas under the receiver-operating-characteristic curve values of miR-3651 and miR-4270 were 0.730 and 0.967, respectively, indicating their potential diagnostic values. Our results may help provide the context for expanded interpretations of miRNA studies involved in the progression of liver disease, potentially serving as a diagnostic tool of HCC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , MicroARNs/genética , Adulto , Anciano , Área Bajo la Curva , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Reproduction ; 148(4): 377-87, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25030893

RESUMEN

The Wilms' tumour 1 (WT1) gene originally identified as a tumour suppressor associated with WTs encodes a zinc finger-containing transcription factor that is expressed in multiple tissues and is an important regulator of cellular and organ growth, proliferation, development, migration and survival. However, there is a deficiency of data regarding the expression and function of WT1 during oocyte maturation and preimplantation embryonic development. Herein, we sought to define the expression characteristics and functions of WT1 during oocyte maturation and preimplantation embryonic development in pigs. We show that WT1 is expressed in porcine oocytes and at all preimplantation stages in embryos generated by ICSI. We then evaluated the effects of down-regulating WT1 expression at germinal vesicle and early ICSI stages using a recombinant plasmid (pGLV3-WT1-shRNA). Down-regulation of WT1 did not affect oocyte maturation but significantly decreased preimplantation embryonic development and increased apoptosis in blastocysts. These results indicate that WT1 plays important roles in the development of porcine preimplantation embryos.


Asunto(s)
Blastocisto/metabolismo , Oocitos/metabolismo , Proteínas WT1/metabolismo , Animales , Apoptosis , Blastocisto/patología , Células Cultivadas , Técnicas de Cocultivo , Regulación hacia Abajo , Técnicas de Cultivo de Embriones , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Maduración In Vitro de los Oocitos , Masculino , Interferencia de ARN , ARN Mensajero/metabolismo , Transducción de Señal , Inyecciones de Esperma Intracitoplasmáticas , Porcinos , Factores de Tiempo , Transfección , Proteínas WT1/genética
16.
Mol Cell Biochem ; 389(1-2): 209-18, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24464032

RESUMEN

The pigs have similarities of organ size, immunology and physiology with humans. Porcine-induced pluripotent stem cells (piPSCs) have great potential application in regenerative medicine. Here, we established piPSCs induced from porcine fetal fibroblasts by the retroviral overexpression of Oct4, Sox2, Klf4, and c-Myc. The piPSCs not only express pluripotent markers but also have the capacity for differentiation in vivo and in vitro, including EB and teratoma formation. We supplemented microRNAs during the induction process because miR-302a, miR-302b, and miR-200c have been reported to be highly expressed in human and mouse embryonic stem cells and in iPSCs. In this study, we found that the overexpression of miR-302a, miR-302b, and miR-200c effectively improved the reprogramming efficiency and reduced the induction time for piPSCs in the OSKM and OSK induction systems. Due to the similar induction efficiency of 4F-induced piPSCs or of three factors combined with miR-302a, miR-302b, and miR-200c (3F-miRNA-induced piPSCs), we recommend the addition of miRNAs instead of c-Myc to reduce the tumorigenicity of piPSCs.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Fibroblastos/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/genética , Porcinos
17.
Biochem Biophys Rep ; 39: 101741, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38881757

RESUMEN

Chimeric antigen receptor (CAR)-modified macrophages are a promising treatment for solid tumor. So far the potential effects of CAR-M cell therapy have rarely been investigated in hepatocellular carcinoma (HCC). Glypican-3 (GPC3) is a biomarker for a variety of malignancies, including liver cancer, which is not expressed in most adult tissues. Thus, it is an ideal target for the treatment of HCC. In this study, we engineered mouse macrophage cells with CAR targeting GPC3 and explored its therapeutic potential in HCC. First, we generated a chimeric adenoviral vector (Ad5f35) delivering an anti-GPC3 CAR, Ad5f35-anti-GPC3-CAR, which using the CAR construct containing the scFv targeting GPC3 and CD3ζ intracellular domain. Phagocytosis and killing effect indicated that macrophages transduced with Ad5f35-anti-GPC3-CAR (GPC3 CAR-Ms) exhibited antigen-specific phagocytosis and tumor cell clearance in vitro, and GPC3 CAR-Ms showed significant tumor-killing effects and promoted expression of pro-inflammatory (M1) cytokines and chemokines. In 3D NACs-origami spheroid model of HCC, CAR-Ms were further demonstrated to have a significant tumor killing effect. Together, our study provides a new strategy for the treatment of HCC through CAR-M cells targeting GPC3, which provides a basis for the research and treatment of hepatocellular carcinoma.

18.
Sci Adv ; 10(29): eado9880, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028810

RESUMEN

Current in vitro models struggle to balance the complexity of human diseases with suitability for large-scale drug tests. While 3D cultures simulate human tissues, they lack cellular intricacy, and integrating these models with high-throughput drug screening remains a challenge. Here, we introduce a method that uses self-assembling nucleic acid nanostructures decorated living cells, termed NACs, to create spheroids with a customizable 3D layout. To demonstrate its uniqueness, our method effectively creates designer 3D spheroids by combining parenchymal cells, stromal cells, and immune cells, leading to heightened physiological relevance and detailed modeling of complex chronic diseases and immune-stromal interactions. Our approach achieves a high level of biological fidelity while being standardized and straightforward to construct with the potential for large-scale drug discovery applications. By merging the precision of DNA nanotechnology with advanced cell culture techniques, we are streamlining human-centric models, striking a balance between complexity and standardization, to boost drug screening efficiency.


Asunto(s)
ADN , Evaluación Preclínica de Medicamentos , Esferoides Celulares , Humanos , Esferoides Celulares/efectos de los fármacos , ADN/química , Evaluación Preclínica de Medicamentos/métodos , Nanotecnología/métodos , Nanoestructuras/química
19.
Cell Physiol Biochem ; 32(3): 523-32, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24008613

RESUMEN

BACKGROUND: Microorganisms and higher plants possess their own omega-3 and omega-6 polyunsaturated fatty acid (PUFAs) biosynthetic pathways. The n-6 fatty acid desaturase gene fad-2 codes for the n-6 desaturase enzyme that coverts oleic acid (OA 18:1 n-9) into linoleic acid (LA 18:2 n-6). The n-3 fatty acid desaturase gene fat-1 codes for the n-3 desaturase enzyme that converts n-6 PUFAs into n-3 PUFAs. Mammals lack n-3 and n-6 desaturase enzymes; therefore, they must obtain their omega-3 and omega-6 fatty acids by consuming plants or seafood. The beneficial effects of n-3 and n-6 PUFAs on human development and cardiovascular health have been well documented. METHODS: Here, we generated fat-1 and fad-2 transgenic mice by introducing mammal expression vectors containing the fat-1 and fad-2 genes via microinjection. RESULTS: Seven transgenic mice were obtained that expressed functional n-3 and n-6 desaturase enzymes. Analysis of the fatty acid contents of transgenic mouse livers revealed that n-6 and n-3 PUFA levels were greatly increased in the transgenic mice compared to wild-type mice. The use ratios of n-9 PUFAs (18:1 n-9) and n-6 PUFAs were both greater in the transgenic mice than in the wild-type controls. CONCLUSION: These transgenic mice were capable of producing their own omega-3 and omega-6 fatty acids. They have the same fatty acid metabolic pathways as higher plants and microbes.


Asunto(s)
Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-3/biosíntesis , Ácidos Grasos Omega-6/biosíntesis , Ácidos Grasos Insaturados/biosíntesis , Animales , delta-5 Desaturasa de Ácido Graso , Ácido Graso Desaturasas/metabolismo , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Cigoto
20.
Reproduction ; 146(6): 569-79, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24051058

RESUMEN

TET1 is implicated in maintaining the pluripotency of embryonic stem cells. However, its precise effects on induced pluripotent stem cells (iPSCs), and particularly on porcine iPSCs (piPSCs), are not well defined. To investigate the role of TET1 in the pluripotency and differentiation of piPSCs, piPSCs were induced from porcine embryonic fibroblasts by overexpression of POU5F1 (OCT4), SOX2, KLF4, and MYC (C-MYC). siRNAs targeting to TET1 were used to transiently knockdown the expression of TET1 in piPSCs. Morphological abnormalities and loss of the undifferentiated state of piPSCs were observed in the piPSCs after the downregulation of TET1. The effects of TET1 knockdown on the expression of key stem cell factors and differentiation markers were analyzed to gain insights into the molecular mechanisms underlying the phenomenon. The results revealed that knockdown of TET1 resulted in the downregulated expression of pluripotency-related genes, such as LEFTY2, KLF2, and SOX2, and the upregulated expression of differentiation-related genes including PITX2, HAND1, GATA6, and LEF1. However, POU5F1, MYC, KLF4, and NANOG were actually not downregulated. Further analysis showed that the methylation levels of the promoters for POU5F1 and MYC increased significantly after TET1 downregulation, whereas there were no obvious changes in the promoters of SOX2, KLF4, and NANOG. The methylation of the whole genome increased, while hydroxymethylation slightly declined. Taken together, these results suggest that TET1 may play important roles in the self-renewal of piPSCs and the maintenance of their characteristics by regulating the expression of genes and the DNA methylation.


Asunto(s)
Metilación de ADN , Dioxigenasas/genética , Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Proto-Oncogenes/genética , Animales , Células Cultivadas , Metilación de ADN/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Factor 4 Similar a Kruppel , Ratones , Ratones Endogámicos NOD , Ratones SCID , ARN Interferente Pequeño/farmacología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA