Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Environ Res ; 245: 117803, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38043900

RESUMEN

The relationship between microplastics (MPs) and human respiratory health has garnered significant attention since inhalation constitutes the primary pathway for atmospheric MP exposure. While recent studies have revealed respiratory risks associated with MPs, virgin MPs used as plastic surrogates in these experiments did not represent the MPs that occur naturally and that undergo aging effects. Thus, the effects of aged MPs on respiratory health remain unknown. We herein analyzed the interaction between inhalable aged MPs with lung surfactant (LS) extracted from porcine lungs vis-à-vis interfacial chemistry employing in-vitro experiments, and explored oxidative damage induced by aged MPs in simulated lung fluid (SLF) and the underlying mechanisms of action. Our results showed that aged MPs significantly increased the surface tension of the LS, accompanied by a diminution in its foaming ability. The stronger adsorptive capacity of the aged MPs toward the phospholipids of LS appeared to produce increased surface tension, while the change in foaming ability might have resulted from a variation in the protein secondary structure and the adsorption of proteins onto MPs. The adsorption of phospholipid and protein components then led to the aggregation of MPs in SLF, where the aged MPs exhibited smaller hydrodynamic diameters in comparison with the unaged MPs, likely interacting with biomolecules in bodily fluids to exacerbate health hazards. Persistent free radicals were also formed on aged MPs, inducing the formation of reactive oxygen species such as superoxide radicals (O2•-), hydrogen peroxide (HOOH), and hydroxyl radicals (•OH); this would lead to LS lipid peroxidation and protein damage and increase the risk of respiratory disease. Our investigation was the first-ever to reveal a potential toxic effect of aged MPs and their actions on the human respiratory system, of great significance in understanding the risk of inhaled MPs on lung health.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Porcinos , Humanos , Anciano , Plásticos/toxicidad , Pulmón/metabolismo , Estrés Oxidativo , Tensoactivos , Contaminantes Químicos del Agua/metabolismo
2.
Ecotoxicol Environ Saf ; 278: 116432, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728947

RESUMEN

Cadmium (Cd) pollution is a serious global environmental problem, which requires a global concern and practical solutions. Microbial remediation has received widespread attention owing to advantages, such as environmental friendliness and soil amelioration. However, Cd toxicity also severely deteriorates the remediation performance of functional microorganisms. Analyzing the mechanism of bacterial resistance to Cd stress will be beneficial for the application of Cd remediation. In this study, the bacteria strain, up to 1400 mg/L Cd resistance, was employed and identified as Proteus mirabilis Ch8 (Ch8) through whole genome sequence analyses. The results indicated that the multiple pathways of immobilizing and detoxifying Cd maintained the growth of Ch8 under Cd stress, which also possessed high Cd extracellular adsorption. Firstly, the changes in surface morphology and functional groups of Ch8 cells were observed under different Cd conditions through SEM-EDS and FTIR analyses. Under 100 mg/L Cd, Ch8 cells exhibited aggregation and less flagella; the Cd biosorption of Ch8 was predominately by secreting exopolysaccharides (EPS) and no significant change of functional groups. Under 500 mg/L Cd, Ch8 were present irregular polymers on the cell surface, some cells with wrapping around; the Cd biosorption capacity exhibited outstanding effects (38.80 mg/g), which was mainly immobilizing Cd by secreting and interacting with EPS. Then, Ch8 also significantly enhanced the antioxidant enzyme activity and the antioxidant substance content under different Cd conditions. The activities of SOD and CAT, GSH content of Ch8 under 500 mg/L Cd were significantly increased by 245.47%, 179.52%, and 241.81%, compared to normal condition. Additionally, Ch8 significantly induced the expression of Acr A and Tol C (the resistance-nodulation-division (RND) efflux pump), and some antioxidant genes (SodB, SodC, and Tpx) to reduce Cd damage. In particular, the markedly higher expression levels of SodB under Cd stress. The mechanism of Ch8 lays a foundation for its application in solving soil remediation.


Asunto(s)
Cadmio , Proteus mirabilis , Contaminantes del Suelo , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental
3.
Environ Geochem Health ; 46(10): 384, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167116

RESUMEN

In recent times, biochar has emerged as a novel approach for environmental remediation due to its exceptional adsorption capacity, attributed to its porous structure formed by the pyrolysis of biomass at elevated temperatures in oxygen-restricted conditions. This characteristic has driven its widespread use in environmental remediation to remove pollutants. When biochar is introduced into ecosystems, it usually changes the makeup of microbial communities by offering a favorable habitat. Its porous structure creates a protective environment that shields them from external pressures. Consequently, microorganisms adhering to biochar surfaces exhibit increased resilience to environmental conditions, thereby enhancing their capacity to degrade pollutants. During this process, pollutants are broken down into smaller molecules through the collaborative efforts of biochar surface groups and microorganisms. Biochar is also often used in conjunction with composting techniques to enhance compost quality by improving aeration and serving as a carrier for slow-release fertilizers. The utilization of biochar to support sustainable agricultural practices and combat environmental contamination is a prominent area of current research. This study aims to examine the beneficial impacts of biochar application on the absorption and breakdown of contaminants in environmental and agricultural settings, offering insights into its optimization for enhanced efficacy.


Asunto(s)
Carbón Orgánico , Restauración y Remediación Ambiental , Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Contaminantes Ambientales/química , Adsorción , Agricultura/métodos , Biodegradación Ambiental , Compostaje/métodos
4.
Environ Geochem Health ; 46(9): 356, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083106

RESUMEN

Acetochlor is a selective pre-emergent herbicide that is widely used to control annual grass and broadleaf weeds. However, due to its stable chemical structure, only a small portion of acetochlor exerts herbicidal activity in agricultural applications, while most of the excess remains on the surfaces of plants or enters ecosystems, such as soil and water bodies, causing harm to the environment and human health. In recent years, researchers have become increasingly focused on the repair of acetochlor residues. Compared with traditional physical and chemical remediation methods, microorganisms are the most effective way to remediate chemical pesticide pollution, such as acetochlor, because of their rich species, wide distribution, and diverse metabolic pathways. To date, researchers have isolated and identified many high-efficiency acetochlor-degrading strains, such as Pseudomonas oleovorans, Klebsiella variicola, Bacillus subtilus, Rhodococcus, and Methylobacillus, among others. The microbial degradation pathways of acetochlor include dechlorination, hydroxylation, N-dealkylation, C-dealkylation, and dehydrogenation. In addition, the microbial enzymes, including hydrolase (ChlH), debutoxylase (Dbo), and monooxygenase (MeaXY), responsible for acetochlor biodegradation are also being investigated. In this paper, we review the migration law of acetochlor in the environment, its toxicity to nontarget organisms, and the main metabolic methods. Moreover, we summarize the latest progress in the research on the microbial catabolism of acetochlor, including the efficient degradation of microbial resources, biodegradation metabolic pathways, and key enzymes for acetochlor degradation. At the end of the article, we highlight the existing problems in the current research on acetochlor biodegradation, provide new ideas for the remediation of acetochlor pollution in the environment, and propose future research directions.


Asunto(s)
Biodegradación Ambiental , Herbicidas , Toluidinas , Toluidinas/toxicidad , Toluidinas/metabolismo , Herbicidas/metabolismo , Herbicidas/toxicidad , Herbicidas/química , Bacterias/metabolismo , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Restauración y Remediación Ambiental/métodos
5.
Environ Res ; 236(Pt 1): 116699, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481057

RESUMEN

For a long time, the well-known Gram-positive bacterium Bacillus thuringiensis (Bt) has been extensively studied and developed as a biological insecticide for Lepidoptera and Coleoptera pests due to its ability to secrete a large number of specific insecticidal proteins. In recent years, studies have found that Bt strains can also potentially biodegrade residual pollutants in the environment. Many researchers have isolated Bt strains from multiple sites polluted by exogenous compounds and characterized and identified their xenobiotic-degrading potential. Furthermore, its pathway for degradation was also investigated at molecular level, and a number of major genes/enzymes responsible for degradation have been explored. At present, a variety of xenobiotics involved in degradation in Bt have been reported, including inorganic pollutants (used in the field of heavy metal biosorption and recovery and precious metal recovery and regeneration), pesticides (chlorpyrifos, cypermethrin, 2,2-dichloropropionic acid, etc.), organic tin, petroleum and polycyclic aromatic hydrocarbons, reactive dyes (congo red, methyl orange, methyl blue, etc.), and ibuprofen, among others. In this paper, the biodegrading ability of Bt is reviewed according to the categories of related pollutants, so as to emphasize that Bt is a powerful agent for removing environmental pollutants.


Asunto(s)
Bacillus thuringiensis , Cloropirifos , Contaminantes Ambientales , Insecticidas , Bacillus thuringiensis/genética , Contaminantes Ambientales/metabolismo , Cloropirifos/metabolismo , Ibuprofeno , Proteínas Bacterianas , Endotoxinas
6.
J Sci Food Agric ; 103(8): 3840-3849, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36305093

RESUMEN

BACKGROUND: Caulerpa lentillifera has received extensive attention regarding expansion of its farming and increasing consumption. In our previous study, the structure of C. lentillifera polysaccharide (CLP) was elucidated. However, little information is available about its health effects. In this study, the anti-obesity effect of CLP was investigated by using a high-fat diet-induced obese mice model with two different supplementation methods. RESULTS: In vitro simulated digestion results showed that CLP significantly decreased the lipid digestibility and induced the lipid droplets aggregation in the intestinal stage to inhibit the absorption of lipids. As revealed by 16S ribosomal RNA sequencing and non-targeted metabolomics, supplement of CLP by both pre-prandial gavage and free feeding patterns effectively prevented mice obesity via ameliorating intestinal flora disturbance and regulating bile acids circulation metabolism. Of note was that CLP administration had no effect on short-chain fatty acids production, suggesting the anti-obesity effect was uncorrelated with their production. Moreover, pre-prandial administration of CLP had a better anti-obesity effect in lowering body weight and serum lipid levels, but the free feeding resulted in a higher α-diversity of gut microbiota. CONCLUSION: The findings of this study indicate that CLP could be a potential anti-obesity nutraceutical and that pre-prandial supplement of CLP may be a better intake method to exhibit its hypolipidemic effect. © 2022 Society of Chemical Industry.


Asunto(s)
Caulerpa , Microbioma Gastrointestinal , Animales , Ratones , Caulerpa/química , Obesidad/prevención & control , Polisacáridos/farmacología , Ácidos Grasos Volátiles , Suplementos Dietéticos , Dieta Alta en Grasa , Ratones Endogámicos C57BL
7.
Carbohydr Polym ; 342: 122435, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048209

RESUMEN

Increasing studies focus on depolymerization of chondroitin sulfate (CS) to enhance its biological activities. In the present study, low-molecular-weight chondroitin sulfate (LMWCS)­iron complexes were obtained by photocatalysis-Fenton reaction. After degradation with the optimal condition of 0.25 % (w/v) TiO2, 10 mM FeSO4, and 400 mM H2O2 for 0, 15, and 60 min, the average relative molecular weights of CS were reduced to 4.77, 2.47, and 1.21 kDa, respectively. Electron paramagnetic resonance and free radical capture test identified •OH, •O2-, and h+ in the photocatalysis-Fenton system, among them h+ was the major contributor for CS degradation. The structures of degradation products were analyzed by UV, CD, XRD, SEM-EDS, and NMR, and the results indicated that CS chelated iron with its carboxyl and sulfate groups, leading to changes in conformation and microtopography. Then 10 oligosaccharides were identified in the degradation products using HPLC-MSn and the depolymerization mechanism was proposed. Furthermore, iron release was observed in simulated gastrointestinal digestion of LMWCS­iron complexes. Notably, the everted gut sac experiment demonstrated that LMWCS­iron complex possessed 3.75 times higher iron absorption than FeSO4 (p < 0.01) and 12.60 times higher CS absorption than original CS (p < 0.0001). In addition, LMWCS­iron exhibited stronger in vitro antioxidant activity than CS.


Asunto(s)
Sulfatos de Condroitina , Peróxido de Hidrógeno , Hierro , Peso Molecular , Titanio , Sulfatos de Condroitina/química , Peróxido de Hidrógeno/química , Hierro/química , Catálisis , Titanio/química , Disponibilidad Biológica , Animales , Procesos Fotoquímicos
8.
Foods ; 13(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540953

RESUMEN

To prevent alcoholic liver disease, the addition of bioactive substances to the alcoholic drink Baijiu has been considered a feasible option. In the present study, the hepatoprotective effects of a sea cucumber sulfated polysaccharide (SCSP) isolated from Stichopus japonicu were investigated. Moreover, in order to enhance its solubility in an alcohol solution, it was depolymerized using a photocatalytic reaction, and the photocatalytic degradation products (dSCSPs) with an average molecular weight of less than 2 kDa were studied and compared with SCSP. They were characterized by a series of chemical and spectroscopy methods and the oligosaccharide fragments in the dSCSP were further identified by HPLC-MSn analysis. Then, the in vivo experiment showed that the addition of SCSP or dSCSP to Baijiu could alleviate alcoholic liver injury in mice. Further analysis also revealed their protective effect in reducing oxidative stress damage and their regulation of the metabolism of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in the liver. Of note, dSCSP was more effective at reducing the level of malondialdehyde in the liver. These findings indicate that the addition of sea cucumber polysaccharide or its low-molecular-weight derivative in Baijiu has the potential to alleviate alcoholic liver injury.

9.
Front Cell Neurosci ; 18: 1369242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846640

RESUMEN

Recently, large-scale scRNA-seq datasets have been generated to understand the complex signaling mechanisms within the microenvironment of Alzheimer's Disease (AD), which are critical for identifying novel therapeutic targets and precision medicine. However, the background signaling networks are highly complex and interactive. It remains challenging to infer the core intra- and inter-multi-cell signaling communication networks using scRNA-seq data. In this study, we introduced a novel graph transformer model, PathFinder, to infer multi-cell intra- and inter-cellular signaling pathways and communications among multi-cell types. Compared with existing models, the novel and unique design of PathFinder is based on the divide-and-conquer strategy. This model divides complex signaling networks into signaling paths, which are then scored and ranked using a novel graph transformer architecture to infer intra- and inter-cell signaling communications. We evaluated the performance of PathFinder using two scRNA-seq data cohorts. The first cohort is an APOE4 genotype-specific AD, and the second is a human cirrhosis cohort. The evaluation confirms the promising potential of using PathFinder as a general signaling network inference model.

10.
J Hazard Mater ; 472: 134548, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38728866

RESUMEN

The complex of heavy metals and organic acids leads to high difficulty in heavy metals separation by traditional technologies. Meanwhile, alkaline precipitation commonly used in industry causes the great consumption of resources and extra pollution. Herein, the effective decomplexation of Cu(Ⅱ)-EDTA and synchronous recycling of Cu2+ were realized by contact-electro-catalysis (CEC) coupled with capacitive deionization (CDI) innovatively. In particular, fluorinated ethylene propylene (FEP) as dielectric powders could generate reactive oxygen species under ultrasonic stimulation, realizing continuous deaminization and decarboxylation of Cu(Ⅱ)-EDTA and accelerating the totally breakage of Cu-O and Cu-N bonds. Additionally, the degradation pathway and intermediates evolution of Cu(Ⅱ)-EDTA were investigated using various characterization methods. It was confirmed that decarboxylation predominantly governed the degradation process of Cu(Ⅱ)-EDTA in CEC. During the course of treatment, the degradation ratio of Cu(Ⅱ)-EDTA reached 86.4 % within 150 min. Impressively, this strategy had satisfactory applicability to other metal combinations and excellent cycle stability. Subsequently, the released Cu ions were captured by CuSe cathode electrode through CDI. This research elucidated the degradation mechanism of persistent organic pollutant during CEC, and provided a novel approach for efficiently treating industrial wastewater containing metal complexes and advancing the exploitation and utilization of new technologies for metal recovery.

11.
Chemosphere ; 362: 142669, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906186

RESUMEN

Exposure to ozone (O3) and nitrogen dioxide (NO2) are related to pulmonary dysfunctions and various lung diseases, but the underlying biochemical mechanisms remain uncertain. Herein, the effect of inhalable oxidizing gas pollutants on the pulmonary surfactant (PS, extracted from porcine lungs), a mixture of active lipids and proteins that plays an important role in maintaining normal respiratory mechanics, is investigated in terms of the interfacial chemistry using in-vitro experiments; and the oxidative stress induced by oxidizing gases in the simulated lung fluid (SLF) supplemented with the PS is explored. The results showed that O3 and NO2 individually increased the surface tension of the PS and reduced its foaming ability; this was accompanied by the surface pressure-area isotherms of the PS monolayers shifting toward lower molecular areas, with O3 exhibiting more severe effects than NO2. Moreover, both O3 and NO2 produced reactive oxygen species (ROS) resulting in lipid peroxidation and protein damage to the PS. The formation of superoxide radicals (O2•-) was correlated with the decomposition of O3 and the reactions of O3 and NO2 with antioxidants in the SLF. These radicals, in the presence of antioxidants, led to the formation of hydrogen peroxide and hydroxyl radicals (•OH). Additionally, the direct oxidation of unsaturated lipids by O3 and NO2 further caused an increase in the ROS content. This change in the ROS chemistry and increased •OH production tentatively explain how inhalable oxidizing gases lead to oxidative stress and adverse health effects. In summary, our results indicated that inhaled O3 and NO2 exposure can significantly alter the interfacial properties of the PS, oxidize its active ingredients, and induce ROS formation in the SLF. The results of this study provide a basis for the elucidation of the potential hazards of inhaled oxidizing gas pollutants in the human respiratory system.


Asunto(s)
Pulmón , Dióxido de Nitrógeno , Estrés Oxidativo , Ozono , Surfactantes Pulmonares , Especies Reactivas de Oxígeno , Estrés Oxidativo/efectos de los fármacos , Animales , Surfactantes Pulmonares/química , Porcinos , Dióxido de Nitrógeno/química , Ozono/química , Ozono/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/química , Peroxidación de Lípido/efectos de los fármacos , Antioxidantes/química , Oxidación-Reducción
12.
J Ethnopharmacol ; 332: 118321, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735418

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps has a long medicinal history as a nourishing herb in traditional Chinese medicine (TCM). Ischemic cardio-cerebrovascular diseases (CCVDs), including cerebral ischemic/reperfusion injury (CI/RI) and myocardial ischemic/reperfusion injury (MI/RI), are major contributors to mortality and disability in humans. Numerous studies have indicated that Cordyceps or its artificial substitutes have significant bioactivity on ischemic CCVDs, however, there is a lack of relevant reviews. AIM OF THE STUDY: This review was conducted to investigate the chemical elements, pharmacological effects, clinical application and drug safety of Cordycepson ischemic CCVDs. MATERIALS AND METHODS: A comprehensive search was conducted on the Web of Science, PubMed, Chinese National Knowledge Infrastructure (CNKI), and Wanfang databases using the keywords "Cordyceps", "Cerebral ischemic/reperfusion injury", and "Myocardial ischemic/reperfusion injury" or their synonyms. The retrieved literature was then categorized and summarized. RESULTS: The study findings indicated that Cordyceps and its bioactive components, including adenosine, cordycepin, mannitol, polysaccharide, and protein, have the potential to protect against CI/RI and MI/RI by improving blood perfusion, mitigating damage from reactive oxygen species, suppressing inflammation, preventing cellular apoptosis, and promoting tissue regeneration. Individually, Cordyceps could reduce neuronal excitatory toxicity and blood-brain barrier damage caused by cerebral ischemia. It can also significantly improve cardiac energy metabolism disorders and inhibit calcium overload caused by myocardial ischemia. Additionally, Cordyceps exerts a significant preventive or curative influence on the factors responsible for heart/brain ischemia, including hypertension, thrombosis, atherosclerosis, and arrhythmia. CONCLUSION: This study demonstrates Cordyceps' prospective efficacy and safety in the prevention or treatment of CI/RI and MI/RI, providing novel insights for managing ischemic CCVDs.


Asunto(s)
Cordyceps , Humanos , Cordyceps/química , Animales , Medicina Tradicional China/métodos , Isquemia Encefálica/tratamiento farmacológico
13.
J Hazard Mater ; 472: 134490, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38696963

RESUMEN

Air pollution by sulfur dioxide (SO2) remains a pressing concern for both the environment and human health. Desulfurization enhanced by persulfate based advanced oxidation processes (PS-AOPs) has been proven to be a feasible method. However, the inherent contradiction between the rapid diffusion mass transfer of SO2 in the "gas-liquid-gas" phase and the limited lifespan of reactive oxygen species (ROS) can not be ignored. Excessive investment in PS is required to sustainably generate ROS to achieve continuous desulfurization performance, which may lead to excessive PS consumption. To address this issue, whether PS can achieve the oxidation absorption of SO2 via a non-reactive oxygen species pathway was investigated. Experimental and computational results demonstrated that peroxymonosulfate (PMS) instead of peroxydisulfate (PDS) had a great SO2 removal performance, the utilization of PS could be effectively achieved by maintaining a 1:1 molar ratio of PMS and removed SO2. The presence of HOO bonds in the PMS introduced a partial positive charge to the oxygen atom, making the PMS polar and more susceptible to be attacked by the nucleophile HSO3-. So SO2 underwent a series of processes including dissolution, dissociation, one-oxygen atom transfer, and ionization before ultimately being converted into SO42- ions, effectively achieving its removal from flue gas. This study may presents a novel approach for achieving high-efficiency flue gas desulfurization.

14.
J Plant Physiol ; 297: 154242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614048

RESUMEN

Roots are essential to terrestrial plants, as their growth and morphology are crucial for plant development. The growth of the roots is affected and regulated by several internal and external environmental signals and metabolic pathways. Among them, chromatin modification plays an important regulatory role. In this study, we explore the potential roles of the histone deacetylase AtHD2D in root development and lay the foundation for further research on the biological processes and molecular mechanisms of AtHD2D in the future. Our study indicates that AtHD2D affects the root tip microenvironment homeostasis by affecting the gene transcription levels required to maintain the root tip microenvironment. In addition, we confirmed that AtHD2D is involved in regulating Arabidopsis lateral root development and further explained the possible role of AtHD2D in auxin-mediated lateral root development. AtHD2D can effectively enhance the resistance of Arabidopsis thaliana to abiotic stress. We believe that AtHD2D is involved in coping with abiotic stress by promoting the development of lateral roots. Overexpression of AtHD2D promotes the accumulation of reactive oxygen species (ROS) in roots, indicating that AtHD2D is also involved in developing lateral roots mediated by ROS. Previous studies have shown that the overexpression of AtHD2D can effectively enhance the resistance of Arabidopsis thaliana to abiotic stress. Based on our data, we believe that AtHD2D participates in the response to abiotic stress by promoting the development of lateral roots. AtHD2D-mediated lateral root development provides new ideas for studying the mechanism of HDAC protein in regulating root development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Histona Desacetilasas , Raíces de Plantas , Estrés Fisiológico , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo
15.
PLoS One ; 18(10): e0292773, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37796896

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0268518.].

16.
J Hazard Mater ; 458: 131954, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392643

RESUMEN

The pollution of heavy metal ions in water seriously affects the ecosystem and human health. Here, an efficient synergetic photocatalytic-photothermal system is designed by combining a mildly oxidized Ti3C2 (mo-Ti3C2) with a super hydrophilic bamboo fiber (BF) membrane. The mo-Ti3C2 heterojunction promotes the transfer and separation of photoinduced charges and thus enhances the photocatalytic reduction of heavy metal ions (Co2+, Pb2+, Zn2+, Mn2+ and Cu2+). The photoreduced metal nanoparticles with high conductivity and LSPR effect further accelerate the transfer and separation of photoinduced charges, and improve photothermal and evaporative performance. The mo-Ti3C2-2.4 @BF membrane in Co(NO3)2 solution can achieve an excellent evaporation rate of 4.6 kg·m-2·h-1 and a high solar-vapor efficiency of up to 97.5% under the light intensity of 2.44 kW·m-2, which are 27.8% and 19.6% higher than those in H2O, respectively, demonstrating the reuse of photoreduced Co nanoparticles. No heavy metal ions are detected in any of the condensed water, and the Co2+ removal rate in the concentrated Co(NO3)2 solution is up to 80.4%. The synergetic photocatalytic-photothermal approach on the mo-Ti3C2 @BF membrane provides a new scope for the continuous removal and reuse of heavy metal ions, as well as for obtaining clean water.

17.
Foods ; 12(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38137281

RESUMEN

Due to its significant physiological effects, a sulfated polysaccharide has been considered an important nutrient of sea cucumber, but its metabolism in vivo is still unclear. The present study investigated the metabolism of a sea cucumber sulfated polysaccharide (SCSP) in rats and its influence on the metabolite profiles. The quantification by HPLC-MS/MS revealed that the blood level of SCSP achieved a maximum of 54.0 ± 4.8 µg/mL at 2 h after gavage, almost no SCSP was excreted through urine, and 55.4 ± 29.8% of SCSP was eliminated through feces within 24 h. These results prove the utilization of SCSP by gut microbiota, and a further microbiota sequencing analysis indicated that the SCSP utilization in the gut was positively correlated with Muribaculaceae and Clostridia_UCG-014. In addition, the non-targeted metabolomic analysis demonstrated the significant effects of SCSP administration on the metabolite profiles of blood, urine, and feces. It is worth noting that the SCSP supplement decreased palmitic acid, stearic acid, and oleic acid in blood and urine while increasing stearic acid, linoleic acid, and γ-linolenic acid in feces, suggesting the inhibition of fat absorption and the enhancement of fat excretion by SCSP, respectively. The present study shed light on the metabolism in vivo and the influence on the fat metabolism of SCSP.

18.
ACS Omega ; 7(33): 29211-29222, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36033691

RESUMEN

Gas pre-extraction technology in a coal reservoir can not only reduce greenhouse gas (GHG) emissions but also effectively recover coalbed methane (CBM). In this work, we use a geomechanical-coupled gas flow (GCF) model to simulate and analyze the pre-extraction effect of a mining-disturbed coal seam. First, the simulation results of the GCF model are compared with field test data to verify the correctness and reliability of our model. Then, the evolution law of the stress field, permeability field, and gas flow field in the extraction process is analyzed through a case study. The results show that the first principal stress of coal in a mining area increases first and then decreases slowly and reaches the peak value at 5 m. The third principal stress increases gradually at first and becomes stable after 10 m. As the distance from the mining face increases, the permeability and gas pressure of the coal seam show continuous and asymmetric "U"-shaped and "n"-shaped distribution characteristics, respectively. In addition, the recovery effect and abnormal emission factors of CBM are discussed. This study can provide theoretical guidance for optimizing the CBM recovery effect and reducing GHG emissions during mining.

19.
PLoS One ; 17(5): e0268518, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35580111

RESUMEN

The detection of rail surface defects is vital for high-speed rail maintenance and management. The CNN-based computer vision approach has been proved to be a strong detection tool widely used in various industrial scenarios. However, the CNN-based detection models are diverse from each other in performance, and most of them require sufficient training samples to achieve high detection performance. Selecting an appropriate model and tuning it with insufficient annotated rail defect images is time-consuming and tedious. To overcome this challenge, motivated by ensemble learning that uses multiple learning algorithms to obtain better predictive performance, we develop an ensemble framework for industrialized rail defect detection. We apply multiple backbone networks individually to obtain features, and mix them in a binary format to obtain better and more diverse sub-networks. Image augmentation and feature augmentation operations are randomly applied to further make the model more diverse. A shared feature pyramid network is adopted to reduce model parameters as well as computation cost. Experimental results substantiate that the approach outperforms single detecting architecture in our specified rail defect task. On the collected dataset with 8 defect classes, our algorithm achieves 7.4% higher mAP.5 compared with YOLOv5 and 2.8% higher mAP.5 compared with Faster R-CNN.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Computadores , Industrias , Tractos Piramidales
20.
Food Funct ; 13(21): 11262-11272, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36226488

RESUMEN

Due to its expanded farming and growing consumption, Caulerpa lentillifera has received extensive attention. In the present study, the physicochemical properties of insoluble dietary fibers from C. lentillifera (CL-IDFs) were evaluated in vitro, and 16S rRNA sequencing analysis as well as non-targeted metabolomics were performed to investigate the hypolipidemic effects of CL-IDFs and their combined supplementation (CL-TDFs, composed of CL-IDFs and soluble polysaccharides of C. lentillifera) in vivo. The results show that CL-IDFs exhibited superior physicochemical capacities on the binding of water, oil, and glucose. In addition, CL-IDF and CL-TDF administration could regulate the gut microbiota, increase acetic and propionic acid levels, and restore the metabolic disorders of amino, fatty, and bile acids in obese mice. Notably, considering the processing cost of C. lentillifera and the equal anti-obesity effects of CL-IDFs and CL-TDFs, fresh whole-food supplementation of C. lentillifera may be a cost-effective way to prevent obesity.


Asunto(s)
Caulerpa , Microbioma Gastrointestinal , Ratones , Animales , Caulerpa/química , Dieta Alta en Grasa/efectos adversos , Fibras de la Dieta/farmacología , ARN Ribosómico 16S/genética , Obesidad/metabolismo , Ratones Obesos , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA