Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(4): e18127, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332532

RESUMEN

This study investigated the underlying comorbidity mechanism between type 2 diabetes mellitus (T2DM) and osteoarthritis (OA), while also assessing the therapeutic potential of quercetin for early intervention and treatment of these two diseases. The shared genes were obtained through GEO2R, limma and weighted gene co-expression network analysis (WGCNA), and validated using clinical databases and the area under the curves (ROC). Functional enrichment analysis was conducted to elucidate the underlying mechanisms of comorbidity between T2DM and OA. The infiltration of immune cells was analysed using the CIBERSORT algorithm in conjunction with ESTIMATE algorithm. Subsequently, transcriptional regulation analysis, potential chemical prediction, gene-disease association, relationships between the shared genes and ferroptosis as well as immunity-related genes were investigated along with molecular docking. We identified the 12 shared genes (EPHA3, RASIP1, PENK, LRRC17, CEBPB, EFEMP2, UBAP1, PPP1R15A, SPEN, MAFF, GADD45B and KLF4) across the four datasets. Our predictions suggested that targeting these shared genes could potentially serve as therapeutic interventions for both T2DM and OA. Specifically, they are involved in key signalling pathways such as p53, IL-17, NF-kB and MAPK signalling pathways. Furthermore, the regulation of ferroptosis and immunity appears to be interconnected in both diseases. Notably, in this context quercetin emerges as a promising drug candidate for treating T2DM and OA by specifically targeting the shared genes. We conducted a bioinformatics analysis to identify potential therapeutic targets, mechanisms and drugs for T2DM and OA, thereby offering novel insights into molecular therapy for these two diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Osteoartritis , Humanos , Quercetina/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Simulación del Acoplamiento Molecular , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Algoritmos , Biología Computacional
2.
Soft Matter ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954481

RESUMEN

Identifying constitutive parameters in engineering and biological materials, particularly those with intricate geometries and mechanical behaviors, remains a longstanding challenge. The recent advent of physics-informed neural networks (PINNs) offers promising solutions, but current frameworks are often limited to basic constitutive laws and encounter practical constraints when combined with experimental data. In this paper, we introduce a robust PINN-based framework designed to identify material parameters for soft materials, specifically those exhibiting complex constitutive behaviors, under large deformation in plane stress conditions. Distinctively, our model emphasizes training PINNs with multi-modal synthetic experimental datasets consisting of full-field deformation and loading history, ensuring algorithm robustness even with noisy data. Our results reveal that the PINNs framework can accurately identify constitutive parameters of the incompressible Arruda-Boyce model for samples with intricate geometries, maintaining an error below 5%, even with an experimental noise level of 5%. We believe our framework provides a robust modulus identification approach for complex solids, especially for those with geometrical and constitutive complexity.

3.
Korean J Physiol Pharmacol ; 28(1): 59-72, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154965

RESUMEN

To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.

4.
Molecules ; 28(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687186

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) has sparked an urgent demand for advanced diagnosis and vaccination worldwide. The discovery of high-affinity ligands is of great significance for vaccine and diagnostic reagent manufacturing. Targeting the receptor binding domain (RBD) from the spike protein of severe acute respiratory syndrome-coronavirus 2, an interface at the outer surface of helices on the Z domain from protein A was introduced to construct a virtual library for the screening of ZRBD affibody ligands. Molecular docking was performed using HADDOCK software, and three potential ZRBD affibodies, ZRBD-02, ZRBD-04, and ZRBD-07, were obtained. Molecular dynamics (MD) simulation verified that the binding of ZRBD affibodies to RBD was driven by electrostatic interactions. Per-residue free energy decomposition analysis further substantiated that four residues with negative-charge characteristics on helix α1 of the Z domain participated in this process. Binding affinity analysis by microscale thermophoresis showed that ZRBD affibodies had high affinity for RBD binding, and the lowest dissociation constant was 36.3 nmol/L for ZRBD-07 among the three potential ZRBD affibodies. Herein, ZRBD-02 and ZRBD-07 affibodies were selected for chromatographic verifications after being coupled to thiol-activated Sepharose 6 Fast Flow (SepFF) gel. Chromatographic experiments showed that RBD could bind on both ZRBD SepFF gels and was eluted by 0.1 mol/L NaOH. Moreover, the ZRBD-07 SepFF gel had a higher affinity for RBD. This research provided a new idea for the design of affibody ligands and validated the potential of affibody ligands in the application of RBD purification from complex feedstock.


Asunto(s)
COVID-19 , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Glicoproteína de la Espiga del Coronavirus
5.
Mol Pain ; 18: 17448069221126078, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-36039405

RESUMEN

Ginsenoside Rh2 is one of the major bioactive ginsenosides in Panax ginseng. Although Rh2 is known to enhance immune cells activity for treatment of cancer, its anti-inflammatory and neuroprotective effects have yet to be determined. In this study, we investigated the effects of Rh2 on spared nerve injury (SNI)-induced neuropathic pain and elucidated the potential mechanisms. We found that various doses of Rh2 intrathecal injection dose-dependently attenuated SNI-induced mechanical allodynia and thermal hyperalgesia. Rh2 also inhibited microglia and astrocyte activation in the spinal cord of a murine SNI model. Rh2 treatment inhibited SNI-induced increase of proinflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1 and IL-6. Expression of miRNA-21, an endogenous ligand of Toll like receptor (TLR)8 was also decreased. Rh2 treatment blocked the mitogen-activated protein kinase (MAPK) signaling pathway by inhibiting of phosphorylated extracellular signal-regulated kinase expression. Finally, intrathecal injection of TLR8 agonist VTX-2337 reversed the analgesic effect of Rh2. These results indicated that Rh2 relieved SNI-induced neuropathic pain via inhibiting the miRNA-21-TLR8-MAPK signaling pathway, thus providing a potential application of Rh2 in pain therapy.


Asunto(s)
Ginsenósidos , MicroARNs , Neuralgia , Fármacos Neuroprotectores , Analgésicos/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Quinasas MAP Reguladas por Señal Extracelular , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Interleucina-6 , Ligandos , Ratones , MicroARNs/genética , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Sprague-Dawley , Receptor Toll-Like 8 , Factor de Necrosis Tumoral alfa/metabolismo
6.
Appl Opt ; 61(14): 4113-4119, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36256087

RESUMEN

We study the influence rules of the speckle size of a light source on ghost imaging, and propose a type of speckle pattern to improve the quality of ghost imaging. The results show that image quality will first increase and then decrease with the increase in speckle size, and there is an optimal speckle size for a specific object. At the same time, by using a random distribution of speckle positions, a type of displacement speckle pattern is designed, and the imaging quality is better than that of random speckle patterns. These results are of great significance for finding the best speckle patterns suitable for detecting targets, which further promotes practical applications of ghost imaging.

7.
Ecotoxicol Environ Saf ; 239: 113641, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35597140

RESUMEN

The effluent of wastewater treatment plants (WWTPs) is an important water resource for some rivers in regions with relatively low precipitation, which may pose ecological risks. Various pollutants and microorganisms are discharged into rivers, along with the WWTP effluent, but this process has not been thoroughly studied. The objective of this study was to evaluate the effect of WWTP effluent on the bacterial community in the sediment and water column of an urban river and to identify the relationship between the total and active bacterial communities. Five sites were sampled in the river, including the most upstream site of the river (Up-most), 200 m upstream of the WWTP (Up-200), at the point of effluent discharge of the WWTP (Eff-pl) and 50 m (Down-50) and 1000 m (Down-1000) downstream of the WWTP. Compared with the two upstream sites (Up-most and Up-200), the bacterial species composition of Eff-pl was significantly different (p < 0.05) in both the sediment and water columns, while the bacterial species composition at Down-1000 was significantly different (p < 0.05) in the sediment but not in the water. The relative abundance of Proteobacteria, Actinobacteriota and Verrucomicrobiota was significantly different (p < 0.05) at Eff-pl in both the sediment and water columns compared with that at the upstream sites. The shared bacterial species between the DNA and RNA 16 S rRNA analyses were only 45.5-62.2% and 43.2-52.3% for the sediment and water, respectively. Accordingly, WWTP effluent drainage significantly alters (p < 0.05) the bacterial composition in the receiving river but can be recovered in water within a short distance. However, in sediment, a longer recovery space is probably needed. Analyses of the combination of total and active bacterial compositions are recommended to evaluate the ecological consequences of WWTP effluent drainage on the bacterial composition.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Bacterias , Ríos/microbiología , Aguas Residuales/microbiología , Agua/farmacología , Contaminantes Químicos del Agua/toxicidad
8.
Med Sci Monit ; 26: e926807, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33199674

RESUMEN

BACKGROUND The neuroinflammation of paraventricular nucleus (PVN) of the hypothalamus has been implicated in the development of hypertension. The promoted invasion of peripheral immune cells into PVN may be attributed to the upregulation of chemokines, then exacerbating neuroinflammation. We studied the expressions of chemokines, activation of microglial cells, and inflammatory mediators in PVN of rats with stress-induced hypertension (SIH). MATERIAL AND METHODS SIH was induced by electrical foot shock combined with noise for 2 h twice a day, at an interval of 4 h for 14 consecutive days. At the end of the 14th day, fresh PVN tissues were collected to measure the expressions of chemokines using the RayBiotech antibody array. RESULTS We are the first to report that the expression of CXCL7 was extremely high in PVN of control rats, and was significantly lower in SIH rats. The expressions of CCL2 and CX3CL1 in PVN of SIH rats significantly exceeded those of control rats. The numbers of CX3CR1 (receptor of CX3CL1)-immunostained cells and oxycocin-42 (OX-42, marker of microglia)-positive cells increased in PVN of the SIH rats. The stress enhanced the protein expressions of proinflammatory cytokines IL-6 and IL-17 and reduced those of anti-inflammatory cytokines TGF-ß and IL-10 in PVN. CONCLUSIONS In PVN of SIH rats, chronic stress induced neuroinflammation characterized by the activated microglia and upregulated proinflammatory cytokines. Expressions of chemokines CXCL7, CX3CL1, and CCL2 were altered. The causal link of chemokines to PVN neuroinflammation and hypertension remain to be determined.


Asunto(s)
Quimiocinas/genética , Hipertensión/etiología , Hipertensión/genética , Núcleo Hipotalámico Paraventricular/patología , Estrés Psicológico/complicaciones , Regulación hacia Arriba/genética , Animales , Presión Sanguínea/fisiología , Quimiocinas/metabolismo , Frecuencia Cardíaca/fisiología , Hipertensión/fisiopatología , Mediadores de Inflamación/metabolismo , Masculino , Microglía/patología , Núcleo Hipotalámico Paraventricular/fisiopatología , Ratas Sprague-Dawley , Estrés Psicológico/fisiopatología
9.
EMBO Rep ; 18(3): 420-436, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28183853

RESUMEN

The Hippo pathway is a critical regulator of tissue size, and aberrations in pathway regulation lead to cancer. MST1/2 and LATS1/2 kinases comprise the core of the pathway that, in association with adaptor proteins SAV and MOB, functions in a sequential manner to phosphorylate and inhibit the transcription factors YAP and TAZ. Here we identify mammalian MARK family members as activators of YAP/TAZ. We show that depletion of MARK4 in MDA-MB-231 breast cancer cells results in the loss of nuclear YAP/TAZ and decreases the expression of YAP/TAZ targets. We demonstrate that MARK4 can bind to MST and SAV, leading to their phosphorylation, and that MARK4 expression attenuates the formation of a complex between MST/SAV and LATS, which depends on the kinase activity of MARK4. Abrogation of MARK4 expression using siRNAs and CRISPR/Cas9 gene editing attenuates the proliferation and migration of MDA-MB-231 cells. Our results show that MARK4 acts as a negative regulator of the Hippo kinase cassette to promote YAP/TAZ activity and that loss of MARK4 restrains the tumorigenic properties of breast cancer cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Aciltransferasas , Animales , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Expresión Génica , Técnicas de Inactivación de Genes , Vía de Señalización Hippo , Humanos , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Serina-Treonina Quinasa 3 , Factores de Transcripción/metabolismo
10.
EMBO J ; 33(24): 2997-3011, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25425573

RESUMEN

The Hippo pathway regulates tissue growth and organ size, and inactivation contributes to cancer. Signals flow through Mst/Lats kinases, which phosphorylate and promote cytoplasmic localization of the transcriptional regulators Yap and Taz to inhibit transcription. Here, we identify the multidomain-containing guanine nucleotide exchange factor (GEF) Arhgef7, or ßPix, as a positive Hippo pathway regulator. We show that ßPix, which localizes to the cytoplasm, binds both Lats and Yap/Taz and thereby promotes Lats-mediated phosphorylation of Yap/Taz in a GEF-independent manner. ßPix is required downstream of both cell density sensing and actin cytoskeletal rearrangements, and we demonstrate that loss of ßPix expression in normal mammary epithelial cells strongly reduces Yap/Taz phosphorylation, promotes nuclear localization and increases target gene expression. Conversely, increased expression of ßPIX in breast cancer cell lines re-couples the Hippo kinase cassette to Yap/Taz, promoting localization of Yap/Taz to the cytoplasm and inhibiting cell migration and proliferation. These studies thus define ßPix as a key component that links the Hippo kinase cassette to Yap/Taz in response to multiple upstream Hippo pathway activators.


Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
11.
J Cancer ; 15(2): 494-507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169542

RESUMEN

Pyroptosis, a highly regulated form of cell death, could hold the key to revolutionizing cancer treatment. With cancer posing a significant global health challenge due to its high morbidity and mortality rates, exploring unconventional therapeutic approaches becomes imperative. Chinese medicine, renowned for its holistic principles, presents intriguing possibilities for treating gastric cancer (GC). Notably, baicalin, a prominent component found in the traditional Chinese herb Scutellaria baicalensis Georgi, has shown promising clinical potential in gastric cancer treatment.To shed light on this intriguing phenomenon, a multidisciplinary approach was undertaken, combining systems biology, bioinformatics, and in vitro studies. The primary objective was to unravel the intricate workings underlying baicalein's ability to promote gastric cancer cell pyroptosis.The findings from this comprehensive study unveiled an essential signaling axis involving NF-κB-NLRP3, which plays a pivotal role in the process of baicalein-induced pyroptosis in gastric cancer cells. As the investigation progressed, it became evident that baicalein exhibited a remarkable capability to reverse the effects of the NLRP3 inhibitor, MCC950 Sodium. Excitingly, the efficacy of cell pyroptosis induction by baicalein demonstrated a discernible dose-dependent relationship, showcasing its potential as a valuable therapeutic agent.The complex nature of these findings underscores the intricate interplay between baicalein, NF-κB-NLRP3 signaling, and gastric cancer cell pyroptosis. As the scientific community delves deeper into the world of Pyroptosis and its therapeutic implications, baicalein's potential as a game-changer in the fight against gastric cancer becomes increasingly evident.

12.
J Cancer ; 15(12): 3684-3707, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911388

RESUMEN

Objective: To comprehensively explore the impact of Mono-ADP-ribosyltransferases-1 expression on both prognosis and the intricate landscape of the tumor immune microenvironment across diverse cancer types, our study seeks to delve into the multifaceted interplay between Mono-ADP-ribosyltransferases-1 expression levels and their implications for clinical outcomes and the dynamic milieu of immune responses within tumors. Methods: Genomic, transcriptomic, and clinical datasets spanning diverse cancer types were meticulously curated from The Cancer Genome Atlas and Genotypic Tissue Expression repositories. Initially, our inquiry focused on discerning the prognostic significance and immunological implications of Mono-ADP-ribosyltransferases-1 expression across this heterogeneous spectrum of malignancies. Subsequently, we scrutinized the relationships between Mono-ADP-ribosyltransferases-1 expression levels and a spectrum of factors including RNA modification genes, genetic mutations, and the emergent concept of tumor stemness. Employing functional enrichment analyses, we endeavored to unravel the underlying mechanistic pathways modulated by Mono-ADP-ribosyltransferases-1. Leveraging Bayesian co-localization analysis, we sought to discern the spatial convergence of Mono-ADP-ribosyltransferases-1 expression particularly within the context of digestive tract tumors. Lastly, to corroborate our findings, we conducted in vitro experiments, specifically focusing on Gastric Cancer, thus corroborating the putative oncogenic role attributed to Mono-ADP-ribosyltransferases-1 in this malignancy. Results: Across diverse tumor types, Mono-ADP-ribosyltransferases-1 expression exhibits distinctive patterns compared to normal and adjacent tissues, thereby intertwining with the prognostic outcomes of numerous cancer patients. Noteworthy findings from our immune role identification underscore the pivotal involvement of Mono-ADP-ribosyltransferases-1 in the landscape of tumor immunotherapy. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis elucidates the enrichment of Mono-ADP-ribosyltransferases-1-associated genes predominantly within the NF-kB, Foxo, and PI3K-Akt signaling cascades, shedding light on potential mechanistic pathways underlying its influence. Bayesian co-localization analysis unveils a compelling genetic correlation between Mono-ADP-ribosyltransferases-1 and digestive tract tumors, accentuating its relevance within this specific oncological domain. Importantly, experimental validation attests to the therapeutic promise of targeting Mono-ADP-ribosyltransferases-1 in the treatment paradigm of gastric cancer, thereby underscoring its potential as a viable therapeutic target deserving of further exploration and clinical translation. Conclusion: This comprehensive pan-cancer analysis unveils crucial insights into the intricate role played by Mono-ADP-ribosyltransferases-1 in the tumorigenesis of diverse malignancies, thereby establishing a robust theoretical framework for subsequent in-depth investigations. Leveraging these insights, targeting Mono-ADP-ribosyltransferases-1-related signaling pathways within the dynamic tumor microenvironment emerges as a promising avenue for novel therapeutic interventions in the realm of tumor immunotherapy. By delineating the interplay between Mono-ADP-ribosyltransferases-1 expression and tumorigenic processes across various cancer types, this study paves the way for innovative therapeutic strategies aimed at disrupting oncogenic signaling cascades and bolstering immune-mediated antitumor responses.

13.
Heliyon ; 10(7): e28672, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596072

RESUMEN

GC is a gastrointestinal tumor with high morbidity and mortality. Owing to the high rate of postoperative recurrence associated with GC, the effectiveness of radiotherapy and chemotherapy may be compromised by the occurrence of severe undesirable side effects. In light of these circumstances, KP, a flavonoid abundantly present in diverse herbal and fruit sources, emerges as a promising therapeutic agent with inherent anti-tumor properties. This study endeavors to demonstrate the therapeutic potential of KP in the context of GC while unraveling the intricate underlying mechanisms. Notably, our investigations unveil that KP stimulation effectively promotes the activation of NLRP3 inflammatory vesicles within AGS cells by engaging the NF-κB signaling pathway. Consequently, the signal cascade triggers the cleavage of Caspase-1, culminating in the liberation of IL-18. Furthermore, we ascertain that KP facilitate AGS cell pyroptosis by inducing mitochondrial damage. Collectively, our findings showcase KP as a compelling candidate for the treatment of GC-related diseases, heralding new possibilities for future therapeutic interventions.

14.
Front Endocrinol (Lausanne) ; 15: 1313651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495787

RESUMEN

Objective: This study sought to elucidate the causal association between gut microbiota (GM) composition and type 2 diabetes mellitus (T2DM) through a comprehensive two-sample bidirectional Mendelian randomization analysis. Method: T2DM data were sourced from the IEU OpenGWAS Project database, complemented by 211 gut microbiota (GM) datasets from the MiBioGen Federation. The primary analytical approach employed was inverse variance weighted (IVW), supplemented by MR-Egger regression and weighted median (WME) methods to investigate their potential interplay. Results were assessed using odds ratios (OR) and 95% confidence intervals (CI). The robustness and reliability of the findings were confirmed through leave-one-out analysis, heterogeneity testing, and assessment of horizontal pleiotropy. Furthermore, we explored the potential mediating role of metabolites in the pathway linking GM to T2DM. Result: A set of 11 Single Nucleotide Polymorphisms (SNPs) linked to GM were identified as instrumental variables (IVs). The IVW analysis revealed that increased abundance of the genus Actinomyces, genus Bilophila, genus Lachnoclostridium, genus Ruminococcus gnavus group, and genus Streptococcus corresponded to a heightened risk of T2DM. Conversely, higher levels of genus Eubacterium oxidoreducens group, genus Oscillospira, genus Ruminococcaceae UCG003, genus Ruminococcaceae UCG010, and genus Sellimonas were associated with a reduced risk of T2DM. However, following false discovery rate (FDR) correction, only the abundance of genus Lachnoclostridium retained a significant positive correlation with T2DM risk (OR = 1.22, q value = 0.09), while the other ten GM showed suggestive associations with T2DM. Reverse MR analysis did not reveal any causal relationship between T2DM and the increased risk associated with the identified GM. Additionally, metabolites did not exhibit mediating effects in this context. Conclusion: This study effectively pinpointed specific GM associated with T2DM, potentially paving the way for novel biomarkers in the prevention and treatment of this condition. The findings suggested that probiotics could emerge as a promising avenue for managing T2DM in the future. Furthermore, the analysis indicated that metabolites do not appear to act as mediators in the pathway from GM to T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Análisis de la Aleatorización Mendeliana , Reproducibilidad de los Resultados , Bases de Datos Factuales
15.
Neurosci Bull ; 40(3): 310-324, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37302108

RESUMEN

Parvalbumin-positive retinal ganglion cells (PV+ RGCs) are an essential subset of RGCs found in various species. However, their role in transmitting visual information remains unclear. Here, we characterized PV+ RGCs in the retina and explored the functions of the PV+ RGC-mediated visual pathway. By applying multiple viral tracing strategies, we investigated the downstream of PV+ RGCs across the whole brain. Interestingly, we found that the PV+ RGCs provided direct monosynaptic input to PV+ excitatory neurons in the superficial layers of the superior colliculus (SC). Ablation or suppression of SC-projecting PV+ RGCs abolished or severely impaired the flight response to looming visual stimuli in mice without affecting visual acuity. Furthermore, using transcriptome expression profiling of individual cells and immunofluorescence colocalization for RGCs, we found that PV+ RGCs are predominant glutamatergic neurons. Thus, our findings indicate the critical role of PV+ RGCs in an innate defensive response and suggest a non-canonical subcortical visual pathway from excitatory PV+ RGCs to PV+ SC neurons that regulates looming visual stimuli. These results provide a potential target for intervening and treating diseases related to this circuit, such as schizophrenia and autism.


Asunto(s)
Colículos Superiores , Vías Visuales , Ratones , Animales , Colículos Superiores/fisiología , Células Ganglionares de la Retina/fisiología , Retina
16.
Aging (Albany NY) ; 16(11): 9753-9783, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38836761

RESUMEN

OBJECTIVE: The primary objective of this study is to conduct a comprehensive screening and analysis of differentially expressed genes related to disulfidoptosis (DEDRGs) in thyroid carcinoma (THCA). This entails delving into the intricate characterization of immune cell infiltration within the THCA context and subsequently formulating and validating a novel prognostic model. METHOD: To achieve our objectives, we first delineated two distinct subtypes of disulfidoptosis-related genes (DRGs) via consensus clustering methodology. Subsequently, employing the limma R package, we identified the DEDRGs critical for our investigation. These DEDRGs underwent meticulous validation across various databases, alongside an in-depth analysis of gene regulation. Employing functional enrichment techniques, we explored the potential molecular mechanisms underlying disulfidoptosis in THCA. Furthermore, we scrutinized the immune landscape within the two identified subtypes utilizing CIBERSORT and ESTIMATE algorithms. The construction of the prognostic model for THCA entailed intricate methodologies including univariate, multivariate Cox regression, and LASSO regression algorithms. The validity and efficacy of our prognostic model were corroborated through Kaplan-Meier survival curves and ROC curves. Additionally, a nomogram was meticulously formulated to facilitate the prediction of patient prognosis. To fortify our findings, we conducted a comprehensive Bayesian co-localization analysis coupled with rigorous in vitro experimentation, aimed at unequivocally establishing the validity of the identified DEDRGs. RESULT: Our analyses unveiled Cluster C1, characterized by elevated expression levels of DEDRGs, as harboring a favorable prognosis accompanied by abundant immune cell infiltration. Correlation analyses underscored predominantly positive associations among the DEDRGs, further affirming their significance in THCA. Differential expression patterns of DEDRGs between tumor samples and normal tissues were evident across the GEPIA and HPA databases. Insights from the TIMER database underscored a robust correlation between DEDRGs and immune cell infiltration. KEGG analysis elucidated the enrichment of DEDRGs primarily in pivotal pathways including MAPK, PPAR signaling pathway, and Proteoglycans in cancer. Furthermore, analyses using CIBERSORT and ESTIMATE algorithms shed light on the crucial role played by DEDRGs in shaping the immune microenvironment. The prognostic model, anchored by five genes intricately associated with THCA prognosis, exhibited commendable predictive accuracy and was intricately linked to the tumor immune microenvironment. Notably, patients categorized with low-risk scores stood to potentially benefit more from immunotherapy. The validation of DEDRGs unequivocally underscores the protective role of INF2 in THCA. CONCLUSION: In summary, our study delineates two discernible subtypes intricately associated with DRGs, revealing profound disparities in immune infiltration and survival prognosis within the THCA milieu. The implications of our findings extend to potential treatment strategies for THCA patients, which could entail targeted interventions directed towards DEDRGs and prognostic genes, thereby influencing disulfidptosis and the immune microenvironment. Moreover, the robust predictive capability demonstrated by our prognostic model, based on the five genes (ANGPTL7, FIRRE, ODAPH, PROKR1, SFRP5), underscores its potential clinical utility in guiding personalized therapeutic approaches for THCA patients.


Asunto(s)
Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/inmunología , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/mortalidad , Pronóstico , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Perfilación de la Expresión Génica , Nomogramas
17.
Front Pharmacol ; 15: 1389179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855739

RESUMEN

Background: Quercetin, a widespread polyphenolic flavonoid, is known for its extensive health benefits and is commonly found in the plant kingdom. The natural occurrence and extraction methods of quercetin are crucial due to its bioactive potential. Purpose: This review aims to comprehensively cover the natural sources of quercetin, its extraction methods, bioavailability, pharmacokinetics, and its role in various cell death pathways and liver fibrosis. Methods: A comprehensive literature search was performed across several electronic databases, including PubMed, Embase, CNKI, Wanfang database, and ClinicalTrials.gov, up to 10 February 2024. The search terms employed were "quercetin", "natural sources of quercetin", "quercetin extraction methods", "bioavailability of quercetin", "pharmacokinetics of quercetin", "cell death pathways", "apoptosis", "autophagy", "pyroptosis", "necroptosis", "ferroptosis", "cuproptosis", "liver fibrosis", and "hepatic stellate cells". These keywords were interconnected using AND/OR as necessary. The search focused on studies that detailed the bioavailability and pharmacokinetics of quercetin, its role in different cell death pathways, and its effects on liver fibrosis. Results: This review details quercetin's involvement in various cell death pathways, including apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis, with particular attention to its regulatory influence on apoptosis and autophagy. It dissects the mechanisms through which quercetin affects these pathways across different cell types and dosages. Moreover, the paper delves into quercetin's effects on liver fibrosis, its interactions with hepatic stellate cells, and its modulation of pertinent signaling cascades. Additionally, it articulates from a physical organic chemistry standpoint the uniqueness of quercetin's structure and its potential for specific actions in the liver. Conclusion: The paper provides a detailed analysis of quercetin, suggesting its significant role in modulating cell death mechanisms and mitigating liver fibrosis, underscoring its therapeutic potential.

18.
Front Immunol ; 15: 1385022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694507

RESUMEN

Liver failure represents a critical medical condition with a traditionally grim prognosis, where treatment options have been notably limited. Historically, liver transplantation has stood as the sole definitive cure, yet the stark disparity between the limited availability of liver donations and the high demand for such organs has significantly hampered its feasibility. This discrepancy has necessitated the exploration of hepatocyte transplantation as a temporary, supportive intervention. In light of this, our review delves into the burgeoning field of hepatocyte transplantation, with a focus on the latest advancements in maintaining hepatocyte function, co-microencapsulation techniques, xenogeneic hepatocyte transplantation, and the selection of materials for microencapsulation. Our examination of hepatocyte microencapsulation research highlights that, to date, most studies have been conducted in vitro or using liver failure mouse models, with a notable paucity of experiments on larger mammals. The functionality of microencapsulated hepatocytes is primarily inferred through indirect measures such as urea and albumin production and the rate of ammonia clearance. Furthermore, research on the mechanisms underlying hepatocyte co-microencapsulation remains limited, and the practicality of xenogeneic hepatocyte transplantation requires further validation. The potential of hepatocyte microencapsulation extends beyond the current scope of application, suggesting a promising horizon for liver failure treatment modalities. Innovations in encapsulation materials and techniques aim to enhance cell viability and function, indicating a need for comprehensive studies that bridge the gap between small-scale laboratory success and clinical applicability. Moreover, the integration of bioengineering and regenerative medicine offers novel pathways to refine hepatocyte transplantation, potentially overcoming the challenges of immune rejection and ensuring the long-term functionality of transplanted cells. In conclusion, while hepatocyte microencapsulation and transplantation herald a new era in liver failure therapy, significant strides must be made to translate these experimental approaches into viable clinical solutions. Future research should aim to expand the experimental models to include larger mammals, thereby providing a clearer understanding of the clinical potential of these therapies. Additionally, a deeper exploration into the mechanisms of cell survival and function within microcapsules, alongside the development of innovative encapsulation materials, will be critical in advancing the field and offering new hope to patients with liver failure.


Asunto(s)
Encapsulación Celular , Supervivencia Celular , Hepatocitos , Animales , Humanos , Encapsulación Celular/métodos , Hepatocitos/trasplante , Hepatocitos/citología , Fallo Hepático/terapia , Trasplante Heterólogo
19.
Front Public Health ; 12: 1387247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38813405

RESUMEN

Purpose: This research investigated the impact of the COVID-19 pandemic on the mental well-being and sleep quality of students in higher vocational colleges in Sichuan, China, identifying key factors influencing their psychological health during this period. Methods: Between January and February 2022, a comprehensive survey was conducted among students from several higher vocational colleges in Sichuan, utilizing a randomized selection approach to involve 3,300 participants. Data were collected through direct interviews executed by skilled interviewers. Results: Out of 3,049 valid responses, a significant number reported experiencing symptoms of poor mental health, anxiety, depression, and insomnia, with prevalence rates of 21.2%, 9.7%, 14.1%, and 81.9%, respectively. Factors contributing positively to mental health and sleep included a higher family economic status, reduced stress from the pandemic, and decreased online activity. Conversely, lack of physical activity post-pandemic, disruptions to education and employment, and deteriorating relationships emerged as negative influencers. Interestingly, a lack of pre-pandemic mental health knowledge acted as a protective factor against insomnia. Conclusion: The ongoing management of COVID-19 has notably influenced the psychological and sleep health of vocational college students, driven by economic, emotional, lifestyle, and educational factors. The findings underscore the necessity for targeted interventions to address these challenges effectively.


Asunto(s)
COVID-19 , Salud Mental , Trastornos del Inicio y del Mantenimiento del Sueño , Calidad del Sueño , Estudiantes , Humanos , COVID-19/epidemiología , COVID-19/psicología , China/epidemiología , Masculino , Estudiantes/psicología , Femenino , Universidades , Adulto Joven , Adulto , Encuestas y Cuestionarios , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , Depresión/epidemiología , Ansiedad/epidemiología , Adolescente , SARS-CoV-2 , Prevalencia
20.
Front Immunol ; 15: 1383936, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638432

RESUMEN

In the quest to address the critical shortage of donor organs for transplantation, xenotransplantation stands out as a promising solution, offering a more abundant supply of donor organs. Yet, its widespread clinical adoption remains hindered by significant challenges, chief among them being immunological rejection. Central to this issue is the role of the complement system, an essential component of innate immunity that frequently triggers acute and chronic rejection through hyperacute immune responses. Such responses can rapidly lead to transplant embolism, compromising the function of the transplanted organ and ultimately causing graft failure. This review delves into three key areas of xenotransplantation research. It begins by examining the mechanisms through which xenotransplantation activates both the classical and alternative complement pathways. It then assesses the current landscape of xenotransplantation from donor pigs, with a particular emphasis on the innovative strides made in genetically engineering pigs to evade complement system activation. These modifications are critical in mitigating the discordance between pig endogenous retroviruses and human immune molecules. Additionally, the review discusses pharmacological interventions designed to support transplantation. By exploring the intricate relationship between the complement system and xenotransplantation, this retrospective analysis not only underscores the scientific and clinical importance of this field but also sheds light on the potential pathways to overcoming one of the major barriers to the success of xenografts. As such, the insights offered here hold significant promise for advancing xenotransplantation from a research concept to a viable clinical reality.


Asunto(s)
Activación de Complemento , Rechazo de Injerto , Animales , Humanos , Porcinos , Trasplante Heterólogo , Animales Modificados Genéticamente , Estudios Retrospectivos , Rechazo de Injerto/prevención & control , Proteínas del Sistema Complemento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA