Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 56(11): 2492-2507.e10, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37890481

RESUMEN

Lipid metabolism has been associated with the cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) stimulator of interferon genes (STING) DNA-sensing pathway, but our understanding of how these signals are integrated into a cohesive immunometabolic program is lacking. Here, we have identified liver X receptor (LXR) agonists as potent inhibitors of STING signaling. We show that stimulation of lipid metabolism by LXR agonists specifically suppressed cyclic GMP-AMP (cGAMP)-STING signaling. Moreover, we developed cyclic dinucleotide-conjugated beads to biochemically isolate host effectors for cGAMP inhibition, and we found that LXR ligands stimulated the expression of sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A), which is a 2'3'-cGAMP-degrading enzyme. Results of crystal structures suggest that cGAMP analog induces dimerization of SMPDL3A, and the dimerization is critical for cGAMP degradation. Additionally, we have provided evidence that SMPDL3A cleaves cGAMP to restrict STING signaling in cell culture and mouse models. Our results reveal SMPDL3A as a cGAMP-specific nuclease and demonstrate a mechanism for how LXR-associated lipid metabolism modulates STING-mediated innate immunity.


Asunto(s)
Metabolismo de los Lípidos , Nucleotidiltransferasas , Animales , Ratones , Receptores X del Hígado/metabolismo , Nucleotidiltransferasas/metabolismo , ADN , Nucleótidos Cíclicos/metabolismo , Inmunidad Innata
2.
Angew Chem Int Ed Engl ; 58(11): 3387-3391, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30644152

RESUMEN

The asymmetric rhodium-catalyzed alkenylation of enones and imines with arylboronic acids has been developed. A highly controllable aryl to vinyl 1,4-rhodium migration is the key step. Stereodefined vinyl moieties were installed in excellent enantioselectivies for most examined examples. DFT calculations reveal that the driving force of this rhodium migration is a kinetically favored process.

3.
Nat Commun ; 12(1): 728, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526773

RESUMEN

The rational design based on a deep understanding of the present reaction mechanism is an important, viable approach to discover new organic transformations. ß-Hydrogen elimination from palladium complexes is a fundamental reaction in palladium catalysis. Normally, the eliminated ß-hydrogen has to be attached to a sp3-carbon. We envision that the hydrogen elimination from sp2-carbon is possible by using thoroughly designed reaction systems, which may offer a new strategy for the preparation of allenes. Here, we describe a palladium-catalyzed cross-coupling of 2,2-diarylvinyl bromides and diazo compounds, where a ß-vinylic hydrogen elimination from allylic palladium intermediate is proposed to be the key step. Both aryl diazo carbonyl compounds and N-tosylhydrazones are competent carbene precursors in this reaction. The reaction mechanism is explored by control experiments, KIE studies and DFT calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA