Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874245

RESUMEN

Mendelian randomization has become a popular tool to assess causal relationships using existing observational data. While randomized controlled trials are considered the gold standard for establishing causality between exposures and outcomes, it is not always feasible to conduct a trial. Mendelian randomization is a causal inference method that uses observational data to infer causal relationships by using genetic variation as a surrogate for the exposure of interest. Publications using the approach have increased dramatically in recent years, including in the field of hepatology. In this concise review, we describe the concepts, assumptions, and interpretation of Mendelian randomization as related to studies in hepatology. We focus on the strengths and weaknesses of the approach for a non-statistical audience, using an illustrative example to assess the causal relationship between body mass index and NAFLD.

2.
Water Sci Technol ; 89(7): 1787-1806, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619903

RESUMEN

The conventional building drainage system was constructed based on the theory of two-phase flow involving water and air. However, the drainage system contained a more intricate three-phase flow, encompassing water, air, and solids, which was relatively overlooked in research. This study addressed the impact of solids on pressure fluctuations, air flow rates, and hydraulic jump fullness within the drainage system, considering three factors: the mass factor, cross-section factor, and viscosity. The investigation was conducted within a single-stack system using both experimental methods and CFD simulations. The findings revealed a positive correlation between both positive and negative pressures and above three factors. The mass factor and the cross-section factor had a more significant impact on the negative pressure of the system. The maximum growth rates of negative pressure extremes under different mass and cross-section factors reached 7.72 and 16.52%, respectively. In contrast, the viscosity of fecal sludge had a slightly higher effect on the positive pressure fluctuation of the drainage system, with the maximum growth rate of positive pressure extremes at 3.41%.


Asunto(s)
Aguas del Alcantarillado , Agua , Presión del Aire , Presión , Viscosidad
3.
Am J Physiol Endocrinol Metab ; 325(2): E119-E131, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37285600

RESUMEN

Elevated fasting free fatty acids (FFAs) and fasting glucose are additively associated with impaired glucose tolerance (IGT) and decreased ß-cell function [quantified as disposition index (DI)]. We sought to examine how changes in fasting FFA and glucose alter islet function. We studied 10 subjects with normal fasting glucose (NFG) and normal glucose tolerance (NGT) on two occasions. On one occasion, Intralipid and glucose were infused overnight to mimic conditions present in IFG/IGT. In addition, we studied seven subjects with IFG/IGT on two occasions. On one occasion, insulin was infused to lower overnight FFA and glucose concentrations to those observed in people with NFG/NGT. The following morning, a labeled mixed meal was used to measure postprandial glucose metabolism and ß-cell function. Elevation of overnight fasting FFA and glucose in NFG/NGT did not alter peak or integrated glucose concentrations (2.0 ± 0.1 vs. 2.0 ± 0.1 Mol per 5 h, Saline vs. Intralipid/glucose, P = 0.55). Although overall ß-cell function quantified by the Disposition Index was unchanged, the dynamic component of ß-cell responsivity (ϕd) was decreased by Intralipid and glucose infusion (9 ± 1 vs. 16 ± 3 10-9, P = 0.02). In people with IFG/IGT, insulin did not alter postprandial glucose concentrations or indices of ß-cell function. Endogenous glucose production and glucose disappearance were also unchanged in both groups. We conclude that acute, overnight changes in FFA, and glucose concentrations do not alter islet function or glucose metabolism in prediabetes.NEW & NOTEWORTHY This experiment studied the effect of changes in overnight concentrations of free fatty acids (FFAs) and glucose on ß-cell function and glucose metabolism. In response to elevation of these metabolites, the dynamic component of the ß-cell response to glucose was impaired. This suggests that in health overnight hyperglycemia and FFA elevation can deplete preformed insulin granules in the ß-cell.


Asunto(s)
Diabetes Mellitus , Intolerancia a la Glucosa , Resistencia a la Insulina , Humanos , Glucosa/metabolismo , Ácidos Grasos no Esterificados , Glucemia/metabolismo , Intolerancia a la Glucosa/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología
4.
Small ; 19(29): e2300231, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37026675

RESUMEN

The thermoelectric (TE) performance of organic materials is limited by the coupling of Seebeck coefficient and electrical conductivity. Herein a new strategy is reported to boost the Seebeck coefficient of conjugated polymer without significantly reducing the electrical conductivity by incorporation of an ionic additive DPPNMe3 Br. The doped polymer PDPP-EDOT thin film exhibits high electrical conductivity up to 1377 ± 109 S cm-1 but low Seebeck coefficient below 30 µV K-1 and a maximum power factor of 59 ± 10 µW m-1 K-2 . Interestingly, incorporation of small amount (at a molar ratio of 1:30) of DPPNMe3 Br into PDPP-EDOT results in the significant enhancement of Seebeck coefficient along with the slight decrease of electrical conductivity after doping. Consequently, the power factor (PF) is boosted to 571 ± 38 µW m-1 K-2 and ZT reaches 0.28 ± 0.02 at 130 °C, which is among the highest for the reported organic TE materials. Based on the theoretical calculation, it is assumed that the enhancement of TE performance for the doped PDPP-EDOT by DPPNMe3 Br is mainly attributed to the increase of energetic disorder for PDPP-EDOT.

5.
Sensors (Basel) ; 23(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430543

RESUMEN

Insomnia is a common sleep disorder around the world, which is harmful to people's health, daily life, and work. The paraventricular thalamus (PVT) plays an essential role in the sleep-wake transition. However, high temporal-spatial resolution microdevice technology is lacking for accurate detection and regulation of deep brain nuclei. The means for analyzing sleep-wake mechanisms and treating sleep disorders are limited. To detect the relationship between the PVT and insomnia, we designed and fabricated a special microelectrode array (MEA) to record electrophysiological signals of the PVT for insomnia and control rats. Platinum nanoparticles (PtNPs) were modified onto an MEA, which caused the impedance to decrease and improved the signal-to-noise ratio. We established the model of insomnia in rats and analyzed and compared the neural signals in detail before and after insomnia. In insomnia, the spike firing rate was increased from 5.48 ± 0.28 spike/s to 7.39 ± 0.65 spike/s, and the power of local field potential (LFP) decreased in the delta frequency band and increased in the beta frequency band. Furthermore, the synchronicity between PVT neurons declined, and burst-like firing was observed. Our study found neurons of the PVT were more activated in the insomnia state than in the control state. It also provided an effective MEA to detect the deep brain signals at the cellular level, which conformed with macroscopical LFP and insomnia symptoms. These results laid the foundation for studying PVT and the sleep-wake mechanism and were also helpful for treating sleep disorders.


Asunto(s)
Nanopartículas del Metal , Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Sueño-Vigilia , Animales , Ratas , Microelectrodos , Platino (Metal) , Neuronas , Tálamo
6.
AAPS PharmSciTech ; 24(4): 87, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36964446

RESUMEN

An imatinib controlled release film-forming system (FFS) was developed based on the drug ion-pair and newly designed oligomeric ionic liquids (OILs) for the topical therapy of cutaneous melanoma, which avoided the systemic side-effect of oral administration and maintained a long local therapy effect. The OILs significantly improved the drug release capacity about 1.5-fold, and the formability and stability of FFSs (verified by AFM/PLM). The in vivo anti-tumor efficacy studies in melanoma tumor bearing mice showed that compared with the oral capsules, the topical application of the optimized imatinib FFS significantly (p < 0.01) increased tumor inhibition rate (67.54 ± 2.72%) and the amount of apoptotic cells. As confirmed by FT-IR and NMR, the partial protonation of OILs were demonstrated to have high hydrogen bond forming capacity, thus showing low polarity and good biocompatibility. More importantly, based on 13C-NMR study, OILs demonstrated higher hydrogen bond forming capacity, and formed bridge between drug ion-pair (O-H of counter-ion) and PVA (O-H), increased the molecular mobility of PVA, thus maintaining a long drug release capacity. Therefore, an imatinib FFS was developed with good therapeutic effect and the effect of drug ion-pair and OILs on increasing the drug skin retention and controlled release of imatinib FFS for topical therapy was clarified at the molecular level, which provided a safe and effective way for the treatment of cutaneous melanoma.


Asunto(s)
Líquidos Iónicos , Melanoma , Neoplasias Cutáneas , Ratones , Animales , Mesilato de Imatinib , Neoplasias Cutáneas/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Administración Cutánea , Preparaciones de Acción Retardada , Espectroscopía Infrarroja por Transformada de Fourier , Piel , Aceites , Melanoma Cutáneo Maligno
7.
BMC Oral Health ; 23(1): 893, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985977

RESUMEN

BACKGROUND: Amelogenesis imperfecta (AI) is a developmental enamel defect affecting the structure of enamel, esthetic appearance, and the tooth masticatory function. Gene mutations are reported to be relevant to AI. However, the mechanism underlying AI caused by different mutations is still unclear. This study aimed to reveal the molecular pathogenesis in AI families with 2 novel pre-mRNA splicing mutations. METHODS: Two Chinese families with AI were recruited. Whole-exome sequencing and Sanger sequencing were performed to identify mutations in candidate genes. Minigene splicing assays were performed to analyze the mutation effects on mRNA splicing alteration. Furthermore, three-dimensional structures of mutant proteins were predicted by AlphaFold2 to evaluate the detrimental effect. RESULTS: The affected enamel in family 1 was thin, rough, and stained, which was diagnosed as hypoplastic-hypomature AI. Genomic analysis revealed a novel splicing mutation (NM_001142.2: c.570 + 1G > A) in the intron 6 of amelogenin (AMELX) gene in family 1, resulting in a partial intron 6 retention effect. The proband in family 2 exhibited a typical hypoplastic AI, and the splicing mutation (NM_031889.2: c.123 + 4 A > G) in the intron 4 of enamelin (ENAM) gene was observed in the proband and her father. This mutation led to exon 4 skipping. The predicted structures showed that there were obvious differences in the mutation proteins compared with wild type, leading to impaired function of mutant proteins. CONCLUSIONS: In this study, we identified two new splicing mutations in AMELX and ENAM genes, which cause hypoplastic-hypomature and hypoplastic AI, respectively. These results expand the spectrum of genes causing AI and broaden our understanding of molecular genetic pathology of enamel formation.


Asunto(s)
Amelogénesis Imperfecta , Proteínas del Esmalte Dental , Humanos , Femenino , Amelogenina/genética , Amelogénesis Imperfecta/genética , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , Mutación/genética , Proteínas Mutantes/genética , Proteínas de la Matriz Extracelular/genética
8.
Genet Epidemiol ; 45(6): 577-592, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34082482

RESUMEN

Interest in analyzing X chromosome single nucleotide polymorphisms (SNPs) is growing and several approaches have been proposed. Prior studies have compared power of different approaches, but bias and interpretation of coefficients have received less attention. We performed simulations to demonstrate the impact of X chromosome model assumptions on effect estimates. We investigated the coefficient biases of SNP and sex effects with commonly used models for X chromosome SNPs, including models with and without assumptions of X chromosome inactivation (XCI), and with and without SNP-sex interaction terms. Sex and SNP coefficient biases were observed when assumptions made about XCI and sex differences in SNP effect in the analysis model were inconsistent with the data-generating model. However, including a SNP-sex interaction term often eliminated these biases. To illustrate these findings, estimates under different genetic model assumptions are compared and interpreted in a real data example. Models to analyze X chromosome SNPs make assumptions beyond those made in autosomal variant analysis. Assumptions made about X chromosome SNP effects should be stated clearly when reporting and interpreting X chromosome associations. Fitting models with SNP × Sex interaction terms can avoid reliance on assumptions, eliminating coefficient bias even in the absence of sex differences in SNP effect.


Asunto(s)
Cromosomas Humanos X/genética , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Sesgo , Femenino , Humanos , Masculino , Inactivación del Cromosoma X/genética
9.
Small ; 18(27): e2201585, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35644863

RESUMEN

To overcome the autophagy compromised mechanism of protective cellular processes by "eating"/"digesting" damaged organelles or potentially toxic materials with autolysosomes in tumor cells, lysosomal impairment can be utilized as a traditional autophagy dysfunction route for tumor therapy; however, this conventional one-way autophagy dysfunction approach is always limited by the therapeutic efficacy. Herein, an innovative pharmacological strategy that can excessively provoke autophagy via endoplasmic reticulum (ER) stress is implemented along with lysosomal impairment to enhance autophagy dysfunction. In this work, the prepared tellurium double-headed nanobullets (TeDNBs) with controllable morphology are modified with human serum albumin (HSA) which facilitates internalization by tumor cells. On the one hand, ER stress can be stimulated by upregulating the phosphorylation eukaryotic translation initiation factor 2 (P-eIF2α) owing to the production of tellurite (TeO32- ) in the specifical hydrogen peroxide-rich tumor environment; thus, autophagy overstimulation occurs. On the other hand, OME can deacidify and impair lysosomes by downregulating lysosomal-associated membrane protein 1 (LAMP1), therefore blocking autolysosome formation. Both in vitro and in vivo results demonstrate that the synthesized TeDNBs-HSA/OME (TeDNBs-HO) exhibit excellent therapeutic efficacy by autophagy dysfunction through ER stress induction and lysosomal damnification. Thus, TeDNBs-HO is verified to be a promising theranostic nanoagent for effective tumor therapy.


Asunto(s)
Lisosomas , Telurio , Autofagia , Estrés del Retículo Endoplásmico , Humanos , Lisosomas/metabolismo , Fosforilación
10.
Neurochem Res ; 47(11): 3318-3330, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35978229

RESUMEN

Noise is a kind of sound that causes agitation and harms human health. Studies have shown that noise can lead to neuroinflammation, damage to synaptic plasticity and altered levels of neurotransmitters that may result in depression. The present study demonstrated that luteolin exerted antidepressant-like effects by improving neuroinflammation in a mouse model of noise-induced depression. Luteolin significantly alleviated noise-induced depression-like behavior. Notably, luteolin treatment not only remarkably ameliorated noise-induced inflammation in the hippocampus and prefrontal cortex, but also increased synapsin. Furthermore, luteolin treatment significantly increased the contents of serum 5-hydroxytryptamine and norepinephrine in noise-induced mice. In sum, luteolin exerts antidepressant effects indepression-like mice caused by noise, which can serve as a potential agent for the treatment of chronic noise-induced depression.


Asunto(s)
Depresión , Luteolina , Animales , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Depresión/etiología , Modelos Animales de Enfermedad , Hipocampo , Luteolina/farmacología , Luteolina/uso terapéutico , Ratones , Enfermedades Neuroinflamatorias , Plasticidad Neuronal , Neurotransmisores/farmacología , Norepinefrina/farmacología , Serotonina , Sinapsinas
11.
J Sep Sci ; 45(4): 812-823, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34898000

RESUMEN

A new strategy combined gold-coated magnetic nanocomposites assisted enrichment with mass spectrometry was developed for the characterization of disulfide bond-contained proteins from Chinese cobra (Naja atra) venom. In this work, core-shell nanocomposites were synthesized by the seed-mediated growth method and used for the enrichment of snake venom proteins containing disulfide bonds. A total of 3545 tryptic digested peptides derived from 96 venom proteins in Naja atra venom were identified. The venom proteins comprised 14 toxin families including three-finger toxins, phospholipase A2 , snake venom metalloproteinase, cobra venom factor, and so forth. Extra 16 venom proteins were detected exclusively in the nanocomposites set, among which 11 venom proteins were from the three-finger toxins family. In the present study, the proposed simple and efficient protocol replaced the tedious and laborious technologies commonly used for pre-separating crude snake venom, suggesting widely implementation in low-abundance or trace disulfide bond-contained proteins or peptides characterization.


Asunto(s)
Antivenenos , Naja naja , Animales , Antivenenos/análisis , Antivenenos/química , Antivenenos/metabolismo , Disulfuros , Naja naja/metabolismo , Proteoma/análisis , Proteómica/métodos
12.
J Lipid Res ; 62: 100131, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34619142

RESUMEN

Most research into red blood cell (RBC) lipids focuses on membrane phospholipids and their relationships to metabolic conditions and diet. Triglycerides (TGs) exist in most cells; the TG-fatty acids serve as readily available fuel for oxidative phosphorylation. Because RBCs lack mitochondria, they would not be expected to store fatty acids in TG. We followed up on a previous in vitro study that found FFA can be incorporated into RBC-TG by testing whether intravenously infused [U-13C]palmitate could be detected in RBC-TG. We also quantified RBC-TG fatty acid concentrations and profiles as they relate to plasma FFA and lipid concentrations. We found that 1) RBC-TG concentrations measured by glycerol and LC/MS were correlated (r = 0.77; P < 0.001) and averaged <50 nmol/ml RBC; 2) RBC-TG concentrations were stable over 18 h; 3) [U-13C]palmitate was detectable in RBC-TG from half the participants; 4) RBC-TGs were enriched in saturated fatty acids and depleted in unsaturated fatty acid compared with plasma FFA and previously reported RBC membrane phospholipids; 5) RBC-TG fatty acid profiles differed significantly between obese and nonobese adults; 6) weight loss altered the RBC-TG fatty acid profile in the obese group; and 7) the RBC-TG fatty acid composition correlated with plasma lipid concentrations. This is the first report showing that plasma FFA contributes to RBC-TG in vivo, in humans, and that the RBC-TG fatty acid profile is related to metabolic health. The storage of saturated fatty acids in RBC-TG stands in stark contrast to the highly unsaturated profile reported in RBC membrane phospholipids.


Asunto(s)
Eritrocitos/química , Ácidos Grasos no Esterificados/metabolismo , Triglicéridos/metabolismo , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Triglicéridos/química
13.
Biochem Biophys Res Commun ; 531(3): 357-363, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32800539

RESUMEN

Microgravity can cause body fluids to accumulate in the brain, resulting in brain damage. There are few studies that focus on the detection of electrophysiological signals in simulated microgravity rats, and the precise mechanisms are unknown. In this study, a new device was established to investigate the influence of microgravity on hippocampal neurons. A 16-channel microelectrode array was fabricated for in vivo multichannel electrophysiological recordings. In these experiments, microelectrode array was inserted into normal, 28-day tail suspension model, and 3-day recovered after modulation rats to record electrophysiological signals in the CA1 and DG regions of the hippocampus. Through analysis of electrophysiological signals, we obtained the following results: (1) spike signals of model rats sporadically showed brief periods of suspension involving most of the recorded neurons, which corresponded to slow and smooth peaks in local field potentials. For model rats, the firing rate was reduced, and the power in the frequency spectrum was concentrated in the slow frequency band (0-1 Hz); (2) after the detected hippocampal cells divided into pyramidal cells and interneurons, the spike duration of pyramidal cells showed remarkable latency, and their average firing rates showed a more significant decrease compared to interneurons. These results demonstrate that the hippocampal neurons were impaired after modulation in the cellular dimension, and pyramidal cells were more susceptible than interneurons.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Giro Dentado/fisiopatología , Electrodos Implantados , Fenómenos Electrofisiológicos , Neuronas/fisiología , Simulación de Ingravidez , Potenciales de Acción/fisiología , Animales , Masculino , Trastornos de la Memoria/fisiopatología , Microelectrodos , Prueba del Laberinto Acuático de Morris , Células Piramidales/fisiología , Ratas Sprague-Dawley , Procesamiento de Señales Asistido por Computador , Aprendizaje Espacial
14.
Sensors (Basel) ; 20(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823521

RESUMEN

The detection of neuroelectrophysiology while performing optogenetic modulation can provide more reliable and useful information for neural research. In this study, an optical fiber and a microelectrode array were integrated through hot-melt adhesive bonding, which combined optogenetics and electrophysiological detection technology to achieve neuromodulation and neuronal activity recording. We carried out the experiments on the activation and electrophysiological detection of infected neurons at the depth range of 900-1250 µm in the brain which covers hippocampal CA1 and a part of the upper cortical area, analyzed a possible local inhibition circuit by combining opotogenetic modulation and electrophysiological characteristics and explored the effects of different optical patterns and light powers on the neuromodulation. It was found that optogenetics, combined with neural recording technology, could provide more information and ideas for neural circuit recognition. In this study, the optical stimulation with low frequency and large duty cycle induces more intense neuronal activity and larger light power induced more action potentials of neurons within a certain power range (1.032 mW-1.584 mW). The present study provided an efficient method for the detection and modulation of neurons in vivo and an effective tool to study neural circuit in the brain.


Asunto(s)
Microelectrodos , Fibras Ópticas , Optogenética , Potenciales de Acción , Neuronas
15.
Zhongguo Yi Liao Qi Xie Za Zhi ; 44(5): 384-389, 2020 Oct 08.
Artículo en Zh | MEDLINE | ID: mdl-33047558

RESUMEN

To satisfy the daily demand of skin condition maintenance, make non-invasive real-time detection, and get proper quantitative evaluation of skin viscoelasticity parameters at the same time, a portable non-invasive detection system to acquire real-time skin tissue viscoelasticity is developed. The system relies mainly on a single-degree-of-freedom forced vibration model, with spring-damp-mass, and on dynamic micro indentation method. The experiment is conducted on two kinds of springs, and on pigskin tissues as well, the system's suitability, accuracy and stability are confirmed. The skin viscoelasticity detection in vivo is also carried out on 20 subjects with different ages, the differences of skin viscoelasticity in various parts of the body are investigated, and the correlations between age and skin viscoelasticity are clarified.


Asunto(s)
Fenómenos Fisiológicos de la Piel , Piel , Elasticidad , Humanos , Tiempo , Viscosidad
16.
Mol Pharm ; 16(8): 3489-3501, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31246475

RESUMEN

Recently, multifunctional clearable inorganic theranostic nanoparticles have been attracting more and more attention. Protein-based nanoparticles can be cleared by the hepatobiliary system efficiently. In this work, ultrasmall gadolinium oxide (Gd2O3) nanoparticles, which possess the advantage of high longitudinal relaxation rate, were coated with bovine serum albumin (BSA). After the Gd2O3/BSA nanoparticles were linked with two-dimensional photothermal MoS2 nanomaterials, the nanoparticles were also modified with hyaluronic acid (HA) through the disulfide bonds for tumor-targeting effect. As indicated by in vitro and in vivo studies, these Gd2O3/BSA@MoS2-HA nanoparticles could be rapidly degraded and excreted after reacting with glutathione (GSH) by the redox response, thus avoiding long-term toxicity. In addition, the cellular uptake study and in vivo multispectral optoacoustic tomography (MSOT), X-ray computed tomography (CT), and magnetic resonance (MR) triple-modal images demonstrated that Gd2O3/BSA@MoS2-HA nanoparticles exhibited a high tumor uptake effect after intravenous injection. Consequently, such clearable theranostic nanoparticles with multiple functions, which are applicable in multimodal imaging-guided cancer therapy, might show promise for applications in nanomedical science.


Asunto(s)
Gadolinio/administración & dosificación , Imagen Multimodal/métodos , Nanopartículas/administración & dosificación , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Animales , Línea Celular Tumoral/trasplante , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Femenino , Gadolinio/química , Gadolinio/farmacocinética , Glutatión/metabolismo , Humanos , Hipertermia Inducida/métodos , Inyecciones Intravenosas , Imagen por Resonancia Magnética/métodos , Tasa de Depuración Metabólica , Ratones , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Tamaño de la Partícula , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Albúmina Sérica Bovina/química , Distribución Tisular , Tomografía Computarizada por Rayos X/métodos
17.
Anal Biochem ; 553: 1-6, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29750943

RESUMEN

Although annonaceous acetogenins (ACGs) have been reported to have antitumor activity for over three decades, and many of the underlying mechanism of ACGs on cancer have been clarified, there are still outstanding issues. In particular, the changes of small metabolite in cancer cells, caused by ACGs intake, have been reported rarely. Recent research has showed that cellular metabolic profiling coupled with ultra-flow liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UFLC-Q-TOF-MS) and multivariable statistical analysis enables a good understanding of ACGs' effects on multidrug resistant human mammary adenocarcinoma (MCF-7/Adr) cells. As a result, 23 potential biomarkers (p < 0.05, VIP >1) were identified, and 5 pathways (impact-value > 0.10) identified. The differential metabolites suggested that ACGs affected metabolomics pathways, including arginine and proline metabolism, glycerophospholipid metabolism, taurine and hypotaurine metabolism, alanine, aspartate and glutamate metabolism and D-Glutamine and D-glutamate metabolism.


Asunto(s)
Acetogeninas/farmacología , Adenocarcinoma/patología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Neoplasias Mamarias Animales/patología , Metabolómica , Animales , Arginina/metabolismo , Línea Celular Tumoral , Glicerofosfolípidos/metabolismo , Humanos , Prolina/metabolismo
18.
Anal Biochem ; 550: 123-131, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29723519

RESUMEN

Temporal Lobe Epilepsy (TLE) is a chronic neurological disorder, characterized by sudden, repeated and transient central nervous system dysfunction. For better understanding of TLE, bio-nanomodified microelectrode arrays (MEA) are designed, for the achievement of high-quality simultaneous detection of glutamate signals (Glu) and multi-channel electrophysiological signals including action potentials (spikes) and local field potentials (LFPs). The MEA was fabricated by Micro-Electro-Mechanical System fabrication technology and all recording sites were modified with platinum black nano-particles, the average impedance decreased by nearly 90 times. Additionally, glutamate oxidase was also modified for the detection of Glu. The average sensitivity of the electrode in Glu solution was 1.999 ±â€¯0.032 × 10-2pA/µM·µm2(n = 3) and linearity was R = 0.9986, with a good selectivity of 97.82% for glutamate and effective blocking of other interferents. In the in-vivo experiments, the MEA was subjected in hippocampus to electrophysiology and Glu concentration detection. During seizures, the fire rate of spikes increases, and the interspike interval is concentrated within 30 ms. The amplitude of LFPs increases by 3 times and the power increases. The Glu level (4.22 µM, n = 4) was obviously higher than normal rats (2.24 µM, n = 4). The MEA probe provides an advanced tool for the detection of dual-mode signals in the research of neurological diseases.


Asunto(s)
Potenciales de Acción , Epilepsia del Lóbulo Temporal , Ácido Glutámico/metabolismo , Hipocampo , Animales , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Oro/química , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Masculino , Nanopartículas del Metal/química , Microelectrodos , Platino (Metal)/química , Ratas , Ratas Sprague-Dawley
19.
Mol Pharm ; 15(5): 1941-1953, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29608315

RESUMEN

For integrating therapy and diagnosis into a single nanoparticle for higher antitumor efficiency and lower toxicity, our group designed a smart theranostic nanoplatform based on a hyaluronic acid-doped polypyrrole-coated bismuth selenide loading with a zinc phthalocyanine nanodish complex (Bi2Se3@HA-doped PPy/ZnPc) for multimodal imaging-guided combined phototherapy. Moreover, we expect that the HA-doped PPy smart shell for the surface functionalization will also be applied to a variety of 2D nanomaterials sharing a similar structure with Bi2Se3 to broaden their applications in biomedicine. The Bi2Se3 hexagon nanodish was synthesized via a simple and safe solution-based method compared to the commonly adopted ones. A one-pot synthesis of the naoncomplex was carried out by adding HA during the polypyrrole coating on the Bi2Se3 process, and then it was further loaded with ZnPc. Besides the good ability for infrared thermal, photoacoustic, fluorescence, and X-ray computed tomography imaging, the nanodish complex has its own high photoheat conversion efficiency for photothermal therapy, and it has remarkable optical absorption of the coefficient for photodynamic therapy. With the EPR effect of nanoparticles and the CD44-targeted effect of HA, the tumor-growth inhibition ratio of Bi2Se3@HA-doped PPy/ZnPc for PTT/PDT was as high as 96.4%, compared with that of the PTT (68.0%) or PDT (24.3%) alone, showing an excellent combined therapeutic effect. Moreover, no obvious toxicity in vivo was caused by the nanoparticles. Thus, such a Bi2Se3@HA-doped PPy/ZnPc nanodish complex has promise for real-time monitoring and precise, high-efficiency antitumor treatment.


Asunto(s)
Antineoplásicos/química , Compuestos de Organoselenio/química , Animales , Bismuto , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Indoles/química , Isoindoles , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Multimodal/métodos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Compuestos Organometálicos/química , Técnicas Fotoacústicas/métodos , Fotoquimioterapia , Fototerapia/métodos , Polímeros/química , Pirroles/química , Compuestos de Selenio , Nanomedicina Teranóstica/métodos , Compuestos de Zinc
20.
Anal Bioanal Chem ; 410(16): 3743-3755, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29632971

RESUMEN

A sensitive, accurate, and time-saving approach was developed for the simultaneous quantification of eight sulfur compounds in the sulfur pathway, which could reflect the status of an organism, including oxidative stress, signal transduction, enzyme reaction, and so on. In order to overcome the instability of highly reactive sulfhydryl compounds, N-ethylmaleimide derivatization was adopted to effectively protect sulfhydryl-containing samples. Using isotope-labeled glutathione (GSH-13C2, 15N), the validated method was demonstrated to offer satisfactory linearity, accuracy, and precision. Separation was done by UHPLC, using a BEH amide column. Accordingly, 0.1% formic acid acetonitrile was selected as the precipitant. A tandem mass spectrometer was coupled to the chromatographic system and afforded a detection limit of 0.2 ng/mL. Good linearity was maintained over a wide concentration range (r2 > 0.994), and the accuracy was in the range of 86.6-114% for all the studied compounds. The precision, expressed in RSD%, ranged from 1.1% to 9.4% as intraday variability and less than 13% as interday precision for all of the analytes. The approach was applied to study the potential therapeutic mechanism of a well-known traditional Chinese medicine, Shao Fu Zhu Yu decoction. The results suggested that Shao Fu Zhu Yu decoction might protect against oxidative damage by increasing the concentrations of sulfhydryl compounds. Graphical abstract An approach to quantitatively determining sulfur compounds in the sulfur pathway simultaneously wasestablished and applied to the study of the effect of Shao Fu Zhu Yu decoction.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Compuestos de Azufre/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión/métodos , Evaluación Preclínica de Medicamentos/métodos , Femenino , Límite de Detección , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Compuestos de Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA