RESUMEN
Human-induced land degradation fragments natural ecosystems, hinders ecological processes, and threatens biodiversity. Maintaining or restoring ecological flows across landscapes through landscape linkages may provide a solution. Here, we identify a peninsula-wide ecological connectivity network for the Korean Peninsula using two linkage mapping models. We found three major north-south axes of connectivity traversing the Demilitarized Zone (DMZ), which emerged as an important east-west linkage. Only 7% of the highest-ranked connections are currently secured by protected areas. We found 120 linkages in North and South Korea that are intersected by road networks consisting of motorways and trunk roads under both models. These locations should be the focus of immediate attention for conservation planners, as well as 274 and 1130 additional road-impacted linkages under one model or the other. The results can be used for policy support, and potentially as a basis for the two countries to engage in discussions about ecosystem health and climate change adaptation. The approach presented here can also be efficiently used to assess and map natural landscape linkages.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Monitoreo del Ambiente/métodos , Biodiversidad , Cambio Climático , Ecología , Humanos , República de CoreaRESUMEN
Fragmented forests generate a variety of forest edges, leading to microclimates in the edge zones that differ from those in the forest interior. Understanding microclimatic variation is an important consideration for managers because it helps when making decisions about how to restrict the extent of edge effects. Thus, our study attempted to characterize the changing microclimate features at an urban forest edge located on Mt. Gwanak, Seoul, South Korea. We examined edge effects on air temperature, relative humidity, soil temperature, soil moisture, and photosynthetically active radiation (PAR) during the hottest three consecutive days in August 2016. Results showed that each variable responded differently to the edge effects. This urban forest edge had an effect on temporal changes at a diurnal scale in all microclimate variables, except soil moisture. In addition, all variables except relative humidity were significantly influenced by the edge effect up to 15 m inward from the forest boundary. The relative humidity fluctuated the most and showed the deepest extent of the edge effect. Moreover, the edge widths calculated from the relative humidity and air temperature both peaked in the late afternoon (16:00 h). Our findings provide a reference for forest managers in designing urban forest zones and will contribute to the conservation of fragmented forests in urban areas.
Asunto(s)
Monitoreo del Ambiente , Bosques , Microclima , Fotosíntesis , República de Corea , Seúl , Suelo , Temperatura , ÁrbolesRESUMEN
Protected areas (PAs) are effective in mitigating human pressures, yet their future pressure alleviating effects remain unclear. In this study, we employed the ConvLSTM model to forecast the future human footprint and analyzed human pressure trends using Theil-Sen median and Mann-Kendall tests. We further evaluated the mitigating effects of PAs within their buffer zones (1-10 km) and the contributions of different IUCN categories of PAs to mitigating human pressure using linear regression models. The results indicate that by 2035, the average human pressure value is expected to increase by 11%, with trends exhibiting a polarized pattern. Furthermore, PAs also effectively mitigate human pressure within their 1 km buffer zones. Different categories of PAs vary in their effectiveness in mitigating human pressure, and stricter conservation areas are not always the most effective. This study can offer insights for evaluating the effectiveness of PAs in reducing human pressure and advocate for their targeted management in urban areas.
Asunto(s)
Conservación de los Recursos Naturales , Humanos , Conservación de los Recursos Naturales/métodos , Modelos TeóricosRESUMEN
Drought-induced anomalies in vegetation condition over wide areas can be observed by using time-series satellite remote sensing data. Previous methods to assess the anomalies may include limitations in considering (1) the seasonality in terms of each vegetation-cover type, (2) cumulative damage during the drought event, and (3) the application to various types of land cover. This study proposed an improved methodology to assess drought impact from the annual vegetation responses, and discussed the result in terms of diverse landscape mosaics in the Mt. Kenya region (0.4° N 35.8° E ~ 1.6° S 38.4° E). From the 30-year annual rainfall records at the six meteorological stations in the study area, we identified 2000 as the drought year and 2001, 2004, and 2007 as the normal precipitation years. The time-series profiles of vegetation condition in the drought and normal precipitation years were obtained from the values of Enhanced Vegetation Index (EVI; Huete et al. 2002), which were acquired from Terra MODIS remote sensing dataset (MOD13Q1) taken every 16 days at the scale of 250-m spatial resolution. The drought impact was determined by integrating the annual differences in EVI profiles between drought and normal conditions, per pixel based on nearly same day of year. As a result, we successfully described the distribution of landscape vulnerability to drought, considering the seasonality of each vegetation-cover type at every MODIS pixel. This result will contribute to the large-scale landscape management of Mt. Kenya region. Future study should improve this method by considering land-use change occurred during the long-term monitoring period.
Asunto(s)
Sequías , Plantas , Nave Espacial , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Kenia , Tecnología de Sensores Remotos , Estaciones del AñoRESUMEN
In this study, a stable red pigment was prepared from Lithospermum erythrorhizon via supercritical carbon dioxide extraction. The optimal extraction conditions were 400 bar and 60 degrees C. The patch tests indicated that up to 10% of the red pigment was acceptable from a skin irritation standpoint. According to the results of the CIE LAB chromaticity test, the color difference was acceptable when compared to commercial synthetic red pigments. The light-illuminated color stability test indicated that the pigment was more stable than the red pigment extracted with ethanol. The higher stability was also demonstrated in the DPPH antioxidant activity test. The supercritical red pigment harbored elevated amounts of shikonin and derivatives, and appears to be usable as a stable red pigment for cosmetic color products.