Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Small ; 20(14): e2308282, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37987150

RESUMEN

Developing low-cost and long-cycling-life aqueous zinc (Zn) ion capacitors (AZICs) for large-scale electrochemical energy storage still faces the challenges of dendritic Zn deposition and interfacial side reactions. Here, an interface engineering strategy utilizing a dibenzenesulfonimide (BBI) additive is employed to enhance the stability of the Zn metal anode/electrolyte interface. The first-principles calculation results demonstrate that BBI anions can be chemically adsorbed on Zn metal. Meanwhile, the experimental results confirm that the BBI-Zn interfacial layer converts the original water-richelectric double layer (EDL) into a water-poor EDL, effectively inhibiting the water related parasitic reaction at the electrode/electrolyte interface. In addition, the BBI-Zn interfacial layer introduces an additional Zn ions (Zn2+) migration energy barrier, increasing the Zn2+ de-solvation activation energy, consequently raising the Zn2+ nucleation overpotential, and thus achieving the compact and uniform Zn deposition behavior. Furthermore, the solid electrolyte interphase (SEI) layer derived from the BBI-Zn interfacial layer during cycling can further maintain the interfacial stability of the Zn anode. Owing to the above favorable features, the assembled AZIC exhibits an ultra-long cycling life of over 300 000 cycles based on the additive engineering strategy, which shows application prospects in high-performance AZICs.

2.
Molecules ; 28(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36771025

RESUMEN

The C-C bond lengths of the linear magnetic neutral CnSb, CnSb+ cations and CnSb- anions are within 1.255-1.336 Å, which is typical for cumulene structures with moderately strong double-bonds. In this report, we found that the adiabatic ionization energy (IE) of CnSb decreased with n. When comparing the IE~n relationship of CnSb with that of pure Cn, we found that the latter exhibited a stair-step pattern (n ≥ 6), but the IE~n relationship of CnSb chains took the shape of a flat curve. The IEs of CnSb were lower than those of corresponding pure carbon chains. Different from pure carbon chains, the adiabatic electron affinity of CnSb does not exhibit a parity effect. There is an even-odd alternation for the incremental binding energies of the open chain CnSb (for n = 1-16) and CnSb+ (n = 1-10, when n > 10, the incremental binding energies of odd (n) chain of CnSb+ are larger than adjacent clusters). The difference in the incremental binding energies between the even and odd chains of both CnSb and pure Cn diminishes with the increase in n. The incremental binding energies for CnSb- anions do not exhibit a parity effect. For carbon chain clusters, the most favorable binding site of atomic antimony is the terminal carbon of the carbon cluster because the terminal carbon with a large spin density bonds in an unsaturated way. The C-Sb bond is a double bond with Wiberg bond index (WBI) between 1.41 and 2.13, which is obviously stronger for a carbon chain cluster with odd-number carbon atoms. The WBI of all C-C bonds was determined to be between 1.63 and 2.01, indicating the cumulene character of the carbon chain. Generally, the alteration of WBI and, in particular, the carbon chain cluster is consistent with the bond length alteration. However, the shorter C-C distance did not indicate a larger WBI. Rather than relying on the empirical comparison of bond distance, the WBI is a meaningful quantitative indicator for predicting the bonding strength in the carbon chain.

3.
Theor Appl Genet ; 133(6): 1911-1926, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32157354

RESUMEN

KEY MESSAGE: The bHLH transcription factor, PPLS1, interacts with SiMYB85 to control the color of pulvinus and leaf sheath by regulating anthocyanin biosynthesis in foxtail millet (Setaria italica). Foxtail millet (Setaria italica), a self-pollinated crop with numerous small florets, is difficult for cross-pollination. The color of pulvinus and leaf sheath with purple being dominant to green is an indicative character and often used for screening authentic hybrids in foxtail millet crossing. Deciphering molecular mechanism controlling this trait would greatly facilitate genetic improvement of cultivars in foxtail millet. Here, using the F2 bulk specific-locus amplified fragment sequencing approach, we mapped the putative causal gene for the purple color of pulvinus and leaf sheath (PPLS) trait to a 100 Kb region on chromosome 7. Expression analyses of the 15 genes in this region revealed that Seita.7G195400 (renamed here as PPLS1) was differentially expressed between purple and green cultivars. PPLS1 encodes a bHLH transcription factor and is localized in the nucleus with a transactivation activity. Furthermore, we observed that expression of a MYB transcription factor gene, SiMYB85 (Seita.4G086300) involved in anthocyanin biosynthesis, shows a totally positive association with that of PPLS1. Heterologous co-expression of both PPLS1 and SiMYB85 in tobacco leaves led to elevated anthocyanin accumulation and expression of some anthocyanin-related genes. Furthermore, PPLS1 physically interacts with SiMYB85. Taken together, our results suggest that PPLS1 interacts with SiMYB85 to control the color of pulvinus and leaf sheath by regulating anthocyanin biosynthesis in foxtail millet.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Plantas/genética , Pulvino/genética , Setaria (Planta)/genética , Factores de Transcripción/genética , Antocianinas/química , Clorofila/química , Color , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple
4.
Angew Chem Int Ed Engl ; 59(22): 8586-8593, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32100927

RESUMEN

The reaction of propargylic amines and CO2 can provide high-value-added chemical products. However, most of catalysts in such reactions employ noble metals to obtain high yield, and it is important to seek eco-friendly noble-metal-free MOFs catalysts. Here, a giant and lantern-like [Zn116 ] nanocage in zinc-tetrazole 3D framework [Zn22 (Trz)8 (OH)12 (H2 O)9 ⋅8 H2 O]n Trz=(C4 N12 O)4- (1) was obtained and structurally characterized. It consists of six [Zn14 O21 ] clusters and eight [Zn4 O4 ] clusters. To our knowledge, this is the highest-nuclearity nanocages constructed by Zn-clusters as building blocks to date. Importantly, catalytic investigations reveal that 1 can efficiently catalyze the cycloaddition of propargylic amines with CO2 , exclusively affording various 2-oxazolidinones under mild conditions. It is the first eco-friendly noble-metal-free MOFs catalyst for the cyclization of propargylic amines with CO2 . DFT calculations uncover that ZnII ions can efficiently activate both C≡C bonds of propargylic amines and CO2 by coordination interaction. NMR and FTIR spectroscopy further prove that Zn-clusters play an important role in activating C≡C bonds of propargylic amines. Furthermore, the electronic properties of related reactants, intermediates and products can help to understand the basic reaction mechanism and crucial role of catalyst 1.

5.
Phys Chem Chem Phys ; 19(10): 7245-7251, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28239737

RESUMEN

The dissociation reaction of methanol on metal-supported MgO(100) films has been studied by employing density functional theory calculations. As far as we know, the dissociation of a single methanol molecule over inert oxide insulators such as MgO has not yet been successfully realized without the introduction of defects or low coordinated atoms. By depositing ultra-thin oxide films on a Mo substrate, we have successfully proposed the dissociative state of methanol. The dissociation reaction is energetically exothermic and nearly barrierless. The lattice mismatch between ultra-thin MgO(100) films and metal substrates plays a crucial role in the heterolytic dissociation of adsorbates, while the electronic effect of the Mo(100) substrate plays a non-ignorable role in the homolytic dissociation of methanol. The metal-supported ultra-thin oxide films studied herein provide a versatile approach to enhance the surface reaction activity and properties of oxides.

6.
Phys Chem Chem Phys ; 18(36): 25373-25379, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27711568

RESUMEN

The formation of highly reactive oxygen species (ROS) on metal oxide surfaces has attracted considerable interest due to their diverse applications. In this work, we have performed density functional theory calculations to investigate the co-adsorption of oxygen and water on ultrathin MgO(100) films deposited on a Mo(100) substrate. We reveal that molecular oxygen can be completely decomposed stepwise with the assistance of water. Consequently, a series of highly ROS including superoxide, hydroperoxide, hydroxyl and single oxygen adatoms are formed on Mo(100) supported MgO(100) thin films. The reaction barriers accompanied by the generation of ROS are reported, and the influence of the thickness of MgO(100) films is also discussed. The promising routes to produce these species provide valuable information to understand the importance of synergy effects between the substrate, the co-adsorbed species, and the film thickness in multiphase catalyst design.

7.
Nanomaterials (Basel) ; 13(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37947676

RESUMEN

The fast rise of organic pollution has posed severe health risks to human beings and toxic issues to ecosystems. Proper disposal toward these organic contaminants is significant to maintain a green and sustainable development. Among various techniques for environmental remediation, advanced oxidation processes (AOPs) can non-selectively oxidize and mineralize organic contaminants into CO2, H2O, and inorganic salts using free radicals that are generated from the activation of oxidants, such as persulfate, H2O2, O2, peracetic acid, periodate, percarbonate, etc., while the activation of oxidants using catalysts via Fenton-type reactions is crucial for the production of reactive oxygen species (ROS), i.e., •OH, •SO4-, •O2-, •O3CCH3, •O2CCH3, •IO3, •CO3-, and 1O2. Nanoscale zero-valent iron (nZVI), with a core of Fe0 that performs a sustained activation effect in AOPs by gradually releasing ferrous ions, has been demonstrated as a cost-effective, high reactivity, easy recovery, easy recycling, and environmentally friendly heterogeneous catalyst of AOPs. The combination of nZVI and AOPs, providing an appropriate way for the complete degradation of organic pollutants via indiscriminate oxidation of ROS, is emerging as an important technique for environmental remediation and has received considerable attention in the last decade. The following review comprises a short survey of the most recent reports in the applications of nZVI participating AOPs, their mechanisms, and future prospects. It contains six sections, an introduction into the theme, applications of persulfate, hydrogen peroxide, oxygen, and other oxidants-based AOPs catalyzed with nZVI, and conclusions about the reported research with perspectives for future developments. Elucidation of the applications and mechanisms of nZVI-based AOPs with various oxidants may not only pave the way to more affordable AOP protocols, but may also promote exploration and fabrication of more effective and sustainable nZVI materials applicable in practical applications.

8.
RSC Adv ; 13(5): 2903-2911, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36756432

RESUMEN

Designing a specific heterojunction by assembling suitable two-dimensional (2D) semiconductors has shown significant potential in next-generation micro-nano electronic devices. In this paper, we study the structural and electronic properties of graphene-MoS2 (Gr-MoS2) heterostructures with in-plain biaxial strain using density functional theory. It is found that the interaction between graphene and monolayer MoS2 is characterized by a weak van der Waals interlayer coupling with the stable layer spacing of 3.39 Å and binding energy of 0.35 J m-2. In the presence of MoS2, the linear bands on the Dirac cone of graphene are slightly split. A tiny band gap about 1.2 meV opens in the Gr-MoS2 heterojunction due to the breaking of sublattice symmetry, and it could be effectively modulated by strain. Furthermore, an n-type Schottky contact is formed at the Gr-MoS2 interface with a Schottky barrier height of 0.33 eV, which can be effectively modulated by in-plane strain. Especially, an n-type ohmic contact is obtained when 6% tensile strain is imposed. The appearance of the non-zero band gap in graphene has opened up new possibilities for its application and the ohmic contact predicts the Gr-MoS2 van der Waals heterojunction nanocomposite as a competitive candidate in next-generation optoelectronics and Schottky devices.

9.
ACS Appl Mater Interfaces ; 14(50): 56237-56252, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36472929

RESUMEN

The construction of nanoplatforms for the multimodal cancer therapy still remains an enormous challenge. Ultrathin porous nitrogen-doped carbon coated stoichiometric copper selenide heterostructures (CuSe/NC) are prepared using a facile and green one-pot hydrothermal method. Interestingly, CuSe/NC itself can achieve both photothermal therapy (PTT) and photocatalytic therapy (PCT) under irradiation of a single near-infrared (NIR) light (808 nm), which is convenient and safe for clinical applications. Importantly, the triple-enhanced NIR light-activated PCT, including O2-independent free radicals, Fenton-like reaction, and glutathione (GSH) depletion, breaks through the limitations of hypoxia and overexpressed GSH in cancer cells. Furthermore, CuSe/NC is loaded with doxorubicin (DOX) via metal coordination and then decorates with DNA to construct the CuSe/NC-DOX-DNA nanoplatform. Surprisingly, the facile nanoplatform has an advanced biocomputing capability of an "AND" Boolean logic gate with the smart "AND" logic controlled release of DOX upon combined stimuli of pH and GSH for precise cancer chemotherapy. The synergistic mechanism of proton-mediated ligand exchange between DOX and GSH is proposed for the "AND" logic controlled drug release from CuSe/NC-DOX-DNA. In vitro and in vivo studies demonstrate that CuSe/NC-DOX-DNA has excellent anticancer efficacy and negligible toxicity. This innovative nanoplatform with multienhanced anticancer efficacy provides a paradigm for combination cancer therapy of PTT, PCT, and chemotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Terapia Fototérmica , Carbono , Porosidad , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/química , Fototerapia/métodos , Nanopartículas/química , Neoplasias/tratamiento farmacológico
10.
Dalton Trans ; 50(8): 2854-2863, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33538274

RESUMEN

A series of nitrogen-rich nitronyl nitroxide radical PPNIT (1)-based (PPNIT = 2-(1-(pyrazin-2-yl)-1H-pyrazole)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) 3d-4f ring-shaped tetranuclear clusters [Ln2Cu2(hfac)10(PPNIT)2(H2O)2]·CHCl3 (LnIII = Gd 2, Tb 3, Dy 4; hfac = hexafiuoroacetylacetonate) with multifunctional properties were isolated. The magnetic behavior, luminescence and heat capacity of the 3d-4f complexes were investigated, displaying interesting multiple properties of the molecular materials. The Gd derivative shows a magnetocaloric effect with the maximum entropy change (-ΔSm) of 15.3 J kg-1 K-1 at 2 K for ΔH = 70 kOe. The Tb cluster exhibits spin glass behavior and the characteristic fluorescence emission of the TbIII ion, while the Dy cluster exhibits SMM behaviour, and the heat capacity has been investigated. Notably, in nitronyl nitroxide radical-metal systems, the investigation of diverse properties is still scarce so far. This work can pave the way towards the synthesis of multifunctional materials that combine SMM behavior, and optical or/and thermodynamic properties.

11.
J Mol Model ; 22(6): 133, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27184003

RESUMEN

A systematic theoretical investigation on cobalt lithium clusters LinCo [1-12] was performed with a DFT approach. The location of global minima and structural evolution were carried out using the partical swarm optimization method. Li6Co is the transition structure in going from low-coordinated structures to three-dimensional torispherical structures with a cobalt atom enclosed by lithium atoms. Maxima of ∆2 E and E b for LinCo were found at n = 3, 6, 8, 10, indicating that these clusters possess higher relative stability than their neighbors. In comparison with small clusters, n = 1-6, the greater electron transfer from Li-2s to Co-3d within cage-like clusters LinCo (n = 7-12) strengthens the bonding effect between Lin and Co, which is reflected in the Wiberg bond index of Co and atomic binding energy analysis. AdNDP analysis verified the presence of both Lewis bonding elements (1c-2e objects) and delocalized bonding elements (6c-2e, 9c-2e and 10c-2e bonds). It is hoped that this theoretical work will provide favorable information to help understand the influence of dopant transition metal atoms on the properties of lithium-based materials.

12.
Sci Rep ; 6: 22853, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26953105

RESUMEN

Controlling the dissociation of single water molecule on an insulating surface plays a crucial role in many catalytic reactions. In this work, we have identified the enhanced chemical reactivity of ultrathin MgO(100) films deposited on Mo(100) substrate that causes water dissociation. We reveal that the ability to split water on insulating surface closely depends on the lattice mismatch between ultrathin films and the underlying substrate, and substrate-induced in-plane tensile strain dramatically results in water dissociation on MgO(100). Three dissociative adsorption configurations of water with lower energy are predicted, and the structural transition going from molecular form to dissociative form is almost barrierless. Our results provide an effective avenue to achieve water dissociation at the single-molecule level and shed light on how to tune the chemical reactions of insulating surfaces by choosing the suitable substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA