Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 180(4): 2272-2289, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31227619

RESUMEN

In plants, the protein RPM1-INTERACTING PROTEIN4 (RIN4) is a central regulator of both pattern-triggered immunity and effector-triggered immunity. RIN4 is targeted by several effectors, including the Pseudomonas syringae protease effector AvrRpt2. Cleavage of RIN4 by AvrRpt2 generates potentially unstable RIN4 fragments, whose degradation leads to the activation of the resistance protein RESISTANT TO P. SYRINGAE2. Hence, identifying the determinants of RIN4 degradation is key to understanding RESISTANT TO P. SYRINGAE2-mediated effector-triggered immunity, as well as virulence functions of AvrRpt2. In addition to RIN4, AvrRpt2 cleaves host proteins from the nitrate-induced (NOI) domain family. Although cleavage of NOI domain proteins by AvrRpt2 may contribute to pattern-triggered immunity regulation, the (in)stability of these proteolytic fragments and the determinants regulating their stability remain unexamined. Notably, a common feature of RIN4, and of many NOI domain protein fragments generated by AvrRpt2 cleavage, is the exposure of a new N-terminal residue that is destabilizing according to the N-end rule. Using antibodies raised against endogenous RIN4, we show that the destabilization of AvrRpt2-cleaved RIN4 fragments is independent of the N-end rule pathway (recently renamed the N-degron pathway). By contrast, several NOI domain protein fragments are genuine substrates of the N-degron pathway. The discovery of this set of substrates considerably expands the number of known proteins targeted for degradation by this ubiquitin-dependent pathway in plants. These results advance our current understanding of the role of AvrRpt2 in promoting bacterial virulence.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética , Pseudomonas syringae/patogenicidad , Ubiquitina/metabolismo , Virulencia
2.
Plant J ; 73(5): 733-46, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23384041

RESUMEN

Plant aerial organs are covered by cuticular waxes, which form a hydrophobic crystal layer that mainly serves as a waterproof barrier. Cuticular wax is a complex mixture of very long chain lipids deriving from fatty acids, predominantly of chain lengths from 26 to 34 carbons, which result from acyl-CoA elongase activity. The biochemical mechanism of elongation is well characterized; however, little is known about the specific proteins involved in the elongation of compounds with more than 26 carbons available as precursors of wax synthesis. In this context, we characterized the three Arabidopsis genes of the CER2-like family: CER2, CER26 and CER26-like . Expression pattern analysis showed that the three genes are differentially expressed in an organ- and tissue-specific manner. Using individual T-DNA insertion mutants, together with a cer2 cer26 double mutant, we characterized the specific impact of the inactivation of the different genes on cuticular waxes. In particular, whereas the cer2 mutation impaired the production of wax components longer than 28 carbons, the cer26 mutant was found to be affected in the production of wax components longer than 30 carbons. The analysis of the acyl-CoA pool in the respective transgenic lines confirmed that inactivation of both genes specifically affects the fatty acid elongation process beyond 26 carbons. Furthermore, ectopic expression of CER26 in transgenic plants demonstrates that CER26 facilitates the elongation of the very long chain fatty acids of 30 carbons or more, with high tissular and substrate specificity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ceras/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo de los Lípidos , Lípidos , Familia de Multigenes , Mutagénesis Insercional , Especificidad de Órganos , Componentes Aéreos de las Plantas/citología , Componentes Aéreos de las Plantas/genética , Componentes Aéreos de las Plantas/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , ARN de Planta/genética , Especificidad por Sustrato , Ceras/química
3.
Sci Rep ; 6: 26020, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27173012

RESUMEN

To efficiently counteract pathogens, plants rely on a complex set of immune responses that are tightly regulated to allow the timely activation, appropriate duration and adequate amplitude of defense programs. The coordination of the plant immune response is known to require the activity of the ubiquitin/proteasome system, which controls the stability of proteins in eukaryotes. Here, we demonstrate that the N-end rule pathway, a subset of the ubiquitin/proteasome system, regulates the defense against a wide range of bacterial and fungal pathogens in the model plant Arabidopsis thaliana. We show that this pathway positively regulates the biosynthesis of plant-defense metabolites such as glucosinolates, as well as the biosynthesis and response to the phytohormone jasmonic acid, which plays a key role in plant immunity. Our results also suggest that the arginylation branch of the N-end rule pathway regulates the timing and amplitude of the defense program against the model pathogen Pseudomonas syringae AvrRpm1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Glucosinolatos/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Complejo de la Endopetidasa Proteasomal/metabolismo , Infecciones por Pseudomonas/inmunología , Pseudomonas syringae/inmunología , Ciclopentanos/inmunología , Regulación de la Expresión Génica de las Plantas , Oxilipinas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA