RESUMEN
Objectives: Gene-environment interaction is an emerging hypothesis to expound not only the autism pathogenesis but also the increased incidence of neurodevelopmental disorders (such as autistic spectrum disorder, attention-deficit, hyperactivity disorder). Among xenobiotics, mycotoxins are worldwide contaminants of food that provoke toxicological effects, crucially resembling several symptoms associated with autism such as oxidative stress, intestinal permeability, and inflammation. Here, we focused on a group of mycotoxins to test their role in the manifestation of autism, try to explain their mechanism of action, and discuss possible preventive and therapeutic interventions. Methods: Autistic children (n = 52) and healthy children [n = 58 (31 siblings and 27 unrelated subjects)] were recruited and body fluids and clinical data collected. The diagnosis of autism was made according to DSM V criteria, then with GMDS 0-2, WPPSI, and ADOS. Ochratoxin A (OTA), gliotoxin, zearalenone, and sphingosine/sphinganine ratio were determined by LC analysis in sera and urines. Statistical analysis was performed by the Wilcoxon Rank Sum (Mann-Whitney) test and Spearman test. Results: By comparing the results of autistic patients with those of unrelated controls, a significant association was found for OTA levels in urines (P = 0.0002) and sera (P = 0.0017), and also comparing patients with siblings and unrelated controls together (P = 0.0081). Discussion: Our results are the first describing a possible role of OTA in the pathobiology of autism. Recalling the male prevalence of ASD (male/female = 4-5/1), it is noted that, in animal models, OTA exerts its neurotoxicity especially in males. Moreover, in vitro, OTA increases microRNA-132 that is dysregulated in autistic patients and involved in reciprocal regulation of the autism-related genes MeCP2 and PTEN. A personalized diet coupled with probiotic administration, especially OTA adsorbing Lactobacillus, could ameliorate autistic symptoms in OTA-positive patients.
Asunto(s)
Trastorno del Espectro Autista , Micotoxinas/sangre , Micotoxinas/orina , Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/orina , Femenino , Humanos , Masculino , Ocratoxinas/sangre , Ocratoxinas/orinaRESUMEN
Environmental factors and genetic susceptibility are implicated in the increased risk of autism spectrum disorder (ASD). Mycotoxins are agricultural contaminants of fungal origin that represent real risk factors for human health and especially for children. Thus, the main hypothesis of this work is that the deterioration of the clinical manifestation of autism in children may result from the exposure to mycotoxins through the consumption of contaminated food. Within a cross-sectional study, a group of autistic children (n = 172) and a group of controls (n = 61) (siblings and non-parental) were recruited in North and South Italy. All children had blood and urine samples taken, for testing some mycotoxins by a LC-MS/MS validated method. Blood samples were also tested for assessing specific IgG against food and fungal antigens and cytokines. The analyses outputs highlighted statistically significant differences comparing mycotoxins levels between (i) children groups both in urine (deoxynivalenol and de-epoxydeoxynivalenol, p = 0.0141 and p = 0.0259, respectively) and serum (aflatoxin M1, ochratoxin A and fumonisin B1, p = 0.0072, p = 0.0141 and p = 0.0061, respectively); (ii) a group of selected fungal IgGs, and IgGs against wheat and gluten and (iii) cytokines. These results suggest the need for a deeper examination of the role that mycotoxins may have on the etiology of ASD.
Asunto(s)
Trastorno del Espectro Autista/sangre , Trastorno del Espectro Autista/orina , Micotoxinas/sangre , Micotoxinas/orina , Anticuerpos Antifúngicos/inmunología , Antígenos Fúngicos/inmunología , Trastorno del Espectro Autista/inmunología , Niño , Preescolar , Citocinas/sangre , Citocinas/orina , Exposición a Riesgos Ambientales/análisis , Femenino , Glútenes/inmunología , Humanos , Inmunoglobulina G/inmunología , Masculino , Triticum/inmunologíaRESUMEN
Feed mill workers may handle or process maize contaminated with aflatoxins (AFs). This condition may lead to an unacceptable intake of toxins deriving from occupational exposure. This study assessed the serological and urinary levels of AFs in workers exposed to potentially contaminated dusts in two mills. From March to April 2014, blood and urine samples were collected, on Monday and Friday morning of the same working week from 29 exposed workers and 30 non-exposed controls. AFs (M1, G2, G1, B1, B2) and aflatoxicol (AFOH) A were analyzed. Each subject filled in a questionnaire to evaluate potential food-borne exposures to mycotoxins. AFs contamination in environmental dust was measured in both plants. No serum sample was found to be positive. Seventy four percent of urine samples (73.7%) revealed AFM1 presence. AFM1 mean concentration was 0.035 and 0.027 ng/mL in exposed and non-exposed workers, respectively (p = 0.432); the concentration was slightly higher in Friday's than in Monday's samples, in exposed workers, 0.040 versus (vs.) 0.031 and non-exposed controls (0.030 vs. 0.024, p = 0.437). Environmental AFs contamination ranged from 7.2 to 125.4 µg/kg. The findings of this study reveal the presence of higher AFs concentration in exposed workers than in non-exposed controls, although these differences are to be considered consistent with random fluctuations.