Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Immunity ; 56(8): 1862-1875.e9, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37478853

RESUMEN

Loss of oral tolerance (LOT) to gluten, driven by dendritic cell (DC) priming of gluten-specific T helper 1 (Th1) cell immune responses, is a hallmark of celiac disease (CeD) and can be triggered by enteric viral infections. Whether certain commensals can moderate virus-mediated LOT remains elusive. Here, using a mouse model of virus-mediated LOT, we discovered that the gut-colonizing protist Tritrichomonas (T.) arnold promotes oral tolerance and protects against reovirus- and murine norovirus-mediated LOT, independent of the microbiota. Protection was not attributable to antiviral host responses or T. arnold-mediated innate type 2 immunity. Mechanistically, T. arnold directly restrained the proinflammatory program in dietary antigen-presenting DCs, subsequently limiting Th1 and promoting regulatory T cell responses. Finally, analysis of fecal microbiomes showed that T. arnold-related Parabasalid strains are underrepresented in human CeD patients. Altogether, these findings will motivate further exploration of oral-tolerance-promoting protists in CeD and other immune-mediated food sensitivities.


Asunto(s)
Antígenos , Inmunidad Innata , Animales , Ratones , Humanos , Dieta , Glútenes , Células Dendríticas , Tolerancia Inmunológica
2.
Int Arch Allergy Immunol ; 183(5): 471-478, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35016174

RESUMEN

BACKGROUND: We have previously showed rTgPI-1 tolerogenic adjuvant properties in asthma treatment, turning it a promising candidate for allergen-specific immunotherapy. This therapy is an alternative treatment to control asthma that still presents several concerns related to its formulation. rTgPI-1 contains independent inhibitory domains able to inhibit trypsin and neutrophil elastase, both involved in asthma pathology. OBJECTIVES: In view of the need to design rational therapies, herein we investigated the contribution of the different inhibitory domains in rTgPI-1 therapeutic effectiveness. METHODS: BALB/c mice were rendered allergic by intraperitoneal OVA-alum sensitization and airway challenged. Once the asthmatic phenotype was achieved, mice were intranasally treated with OVA combined with the full-length recombinant protein rTgPI-1 or its truncated versions, Nt (containing trypsin-inhibitory domains) or Ct (containing neutrophil elastase-inhibitory domains). Afterward, mice were aerosol re-challenged. RESULTS: Asthmatic mice treated with the neutrophil elastase- or the trypsin-inhibitory domains separately failed to improve allergic lung inflammation. Only when all inhibitory domains were simultaneously administered, an improvement was achieved. Still, a better outcome was obtained when mice were treated with the full-length rTgPI-1. CONCLUSIONS: Adjuvant ability depends on the presence of all its inhibitory domains in a single entity, so it should be included in potential asthma treatment formulations as a full-length protein.


Asunto(s)
Asma , Toxoplasma , Adyuvantes Inmunológicos , Animales , Asma/patología , Asma/terapia , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Elastasa de Leucocito , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina , Inhibidores de Serina Proteinasa , Toxoplasma/genética , Tripsina , Vacunación
3.
Exp Parasitol ; 185: 62-70, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29309783

RESUMEN

The development of an effective and safe vaccine to prevent Toxoplasma gondii infection is an important aim due to the great clinical and economic impact of this parasitosis. We have previously demonstrated that immunization with the serine protease inhibitor-1 (TgPI-1) confers partial protection to C3H/HeN and C57BL/6 mice. In order to improve the level of protection, in this work, we combined this novel antigen with ROP2 and/or GRA4 recombinant proteins (rTgPI-1+rROP2, rTgPI-1+rGRA4, rTgPI-1+rROP2+rGRA4) to explore the best combination against chronic toxoplasmosis in C3H/HeN mice. All tested vaccine formulations, administered following a homologous prime-boost protocol that combines intradermal and intranasal routes, conferred partial protection as measured by the reduction of brain cyst burden following oral challenge with tissue cysts of Me49 T. gondii strain. The highest level of protection was achieved by the mixture of rTgPI-1 and rROP2 proteins with an average parasite burden reduction of 50% compared to the unvaccinated control group. The vaccine-induced protective effect was related to the elicitation of systemic cellular and humoral immune responses that included antigen-specific spleen cell proliferation, the release of Th1/Th2 cytokines, and the generation of antigen-specific antibodies in serum. Additionally, mucosal immune responses were also induced, characterized by secretion of antigen-specific IgA antibodies in intestinal lavages and specific mesenteric lymph node cell proliferation. Our results demonstrate that rTgPI-1+rROP2 antigens seem a promising mixture to be combined with other immunogenic proteins in a multiantigenic vaccine formulation against toxoplasmosis.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas Antiprotozoos/normas , Toxoplasma/inmunología , Toxoplasmosis Animal/prevención & control , Animales , Anticuerpos Antiprotozoarios/sangre , Línea Celular , Enfermedad Crónica , Citocinas/metabolismo , Femenino , Fibroblastos/parasitología , Prepucio/citología , Humanos , Inmunoglobulina A Secretora/análisis , Inmunoglobulina G/sangre , Mucosa Intestinal/inmunología , Masculino , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C3H , Proteínas Protozoarias/inmunología , Bazo/citología , Bazo/inmunología , Vacunas Sintéticas/normas
4.
Exp Parasitol ; 154: 47-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25888245

RESUMEN

The increased prevalence of allergies in developed countries has been attributed to a reduced exposure to some microbes. In agreement with epidemiological studies, we previously showed that Toxoplasma gondii infection prevents allergic airway inflammation. The mechanisms would be related to the strong Th1 response induced by the parasite and to regulatory cell induction. Herein we further characterized whether T. gondii allergy modulation extents to a systemic level or if it is limited to the lung. Parasite infection before allergic sensitization resulted in a diminished Th2 cytokine response and, when sensitized during acute infection, an increased in TGF-ß production was detected. Allergen specific T cell proliferation was also reduced. Sensitization during both acute and chronic phases of infection resulted in a decreased anaphylaxis reaction. Our results extend earlier work and show that, in addition to lung airway inflammation, T. gondii infection can suppress allergic responses at systemic level. These results open the possibility that this protozoan infection could modulate other allergic disorders such as atopic dermatitis or oral allergies. Understanding the mechanisms by which different microorganisms regulate inflammation may potentially lead to the development of strategies aimed to control atopic diseases.


Asunto(s)
Citocinas/biosíntesis , Hipersensibilidad/prevención & control , Pulmón/inmunología , Bazo/inmunología , Toxoplasmosis Animal/inmunología , Animales , Degranulación de la Célula/inmunología , Proliferación Celular , Pulmón/citología , Mastocitos/fisiología , Ratones , Ratones Endogámicos BALB C , Bazo/citología , Toxoplasma/inmunología
5.
Immunobiology ; 228(3): 152395, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37210753

RESUMEN

BACKGROUND: Allergies are increasing worldwide. The presence of atopic diseases in the mother propagates the onset of allergic diseases in the offspring with a considerably stronger penetrance than atopic diseases of the father. Such observation challenges genetic predispositions as the sole cause of allergic diseases. Epidemiological studies suggest that caregiver stress in the perinatal period may predispose offspring to asthma. Only one group has studied the link between prenatal stress and neonatal asthma susceptibility in a murine model. OBJECTIVES: We aimed to study if the neonatal increased risk of developing allergic lung inflammation persists after puberty and if there are sex differences in susceptibility. METHODS: Pregnant BALB/c mice were subjected to a single restraint stress exposure at day 15 of gestation. Pups were separated by gender and subjected to a well-known sub-optimal asthma model after puberty. RESULTS: Adult mice born to stressed dams were more susceptible to developing allergic pulmonary inflammation since an increase in the number of eosinophils in bronchoalveolar lavage (BAL), a greater peribronchial and perivascular infiltrate, a higher proportion of mucus-producing cells, and increased IL-4 and IL-5 levels in BAL were detected compared to control mice. These effects were more profound in females than males. Moreover, only females from stressed dams showed an increase in IgE levels. CONCLUSIONS: Increased litter susceptibility to develop allergic lung inflammation induced by maternal stress persists after puberty and is more potent in females than in male mice.


Asunto(s)
Asma , Hipersensibilidad , Neumonía , Embarazo , Masculino , Femenino , Animales , Ratones , Asma/etiología , Eosinófilos , Lavado Broncoalveolar/efectos adversos , Neumonía/complicaciones , Ratones Endogámicos BALB C , Pulmón , Modelos Animales de Enfermedad , Ovalbúmina , Líquido del Lavado Bronquioalveolar
6.
NPJ Vaccines ; 8(1): 149, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794010

RESUMEN

COVID-19 vaccines were originally designed based on the ancestral Spike protein, but immune escape of emergent Variants of Concern (VOC) jeopardized their efficacy, warranting variant-proof vaccines. Here, we used preclinical rodent models to establish the cross-protective and cross-neutralizing capacity of adenoviral-vectored vaccines expressing VOC-matched Spike. CoroVaxG.3-D.FR, matched to Delta Plus Spike, displayed the highest levels of nAb to the matched VOC and mismatched variants. Cross-protection against viral infection in aged K18-hACE2 mice showed dramatic differences among the different vaccines. While Delta-targeted vaccines fully protected mice from a challenge with Gamma, a Gamma-based vaccine offered only partial protection to Delta challenge. Administration of CorovaxG.3-D.FR in a prime/boost regimen showed that a booster was able to increase the neutralizing capacity of the sera against all variants and fully protect aged K18-hACE2 mice against Omicron BA.1, as a BA.1-targeted vaccine did. The neutralizing capacity of the sera diminished in all cases against Omicron BA.2 and BA.5. Altogether, the data demonstrate that a booster with a vaccine based on an antigenically distant variant, such as Delta or BA.1, has the potential to protect from a wider range of SARS-CoV-2 lineages, although careful surveillance of breakthrough infections will help to evaluate combination vaccines targeting antigenically divergent variants yet to emerge.

7.
Vaccine ; 39(6): 933-942, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33451777

RESUMEN

Toxoplasmosis is a zoonotic disease with worldwide prevalence in humans and warm-blooded animal populations. In livestock Toxoplasma gondii is the causal agent of significant economic losses since it can cause abortions in goats and sheep. It is estimated that one third of the world population is infected. Although there are effective therapies for acute infection, these are sometimes poorly tolerated, teratogenic, and have a long administration time. Considering the deficiencies that exist related to the prevention and treatment of toxoplasmosis, the development of a safe and effective vaccine would be extremely valuable in fighting against this infection. In the present work, we characterize for the first time the adjuvant and immunogenic potential of a recombinant profilin protein (rTgPF), in a vaccine formulation alone or in combination with the well-known GRA7 antigen candidate in a murine toxoplasmosis model. Since TgPF acts as a ligand for TLR11 and 12 inducing innate immune responses that promote type 1 adaptive responses, we first study the capacity of the mix rGRA7 + rTgPF to initiate an immune response by evaluating dendritic cell activation. Both rTgPF and rGRA7 induces activation of mouse BMDCs more efficiently than the single proteins, evidenced by increased expression of CD80 and CD86 co-stimulatory proteins and secretion of IL-6, IL-10 and IL-12 cytokines after in vitro stimulation. The sum of the effects of rGRA7 and rTgPF on BMDCs maturation led us to assay them in a vaccination protocol. BALB/c mice vaccinated with this mix elicited a Th1-biased immunity via the induction of lymphocyte proliferation, activation of CD4+T cells and increased IFN-γ production that resulted in enhanced protection against chronic Toxoplama gondii infection. Profilin per se induce only cellular immunity but augments the effect of rGRA7 immune responses when used together, thus allowing us to postulate rTgPF as a potential adjuvant in a protein vaccine.


Asunto(s)
Antígenos de Protozoos/inmunología , Profilinas/inmunología , Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos , Toxoplasmosis Animal , Animales , Anticuerpos Antiprotozoarios , Citocinas , Ratones , Ratones Endogámicos BALB C , Toxoplasma , Toxoplasmosis Animal/prevención & control , Vacunación
8.
Vaccines (Basel) ; 9(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34696219

RESUMEN

Most approved vaccines against COVID-19 have to be administered in a prime/boost regimen. We engineered a novel vaccine based on a chimeric human adenovirus 5 (hAdV5) vector. The vaccine (named CoroVaxG.3) is based on three pillars: (i) high expression of Spike to enhance its immunodominance by using a potent promoter and an mRNA stabilizer; (ii) enhanced infection of muscle and dendritic cells by replacing the fiber knob domain of hAdV5 by hAdV3; (iii) use of Spike stabilized in a prefusion conformation. The transduction with CoroVaxG.3-expressing Spike (D614G) dramatically enhanced the Spike expression in human muscle cells, monocytes and dendritic cells compared to CoroVaxG.5 that expressed the native fiber knob domain. A single dose of CoroVaxG.3 induced a potent humoral immunity with a balanced Th1/Th2 ratio and potent T-cell immunity, both lasting for at least 5 months. Sera from CoroVaxG.3-vaccinated mice was able to neutralize pseudoviruses expressing B.1 (wild type D614G), B.1.117 (alpha), P.1 (gamma) and B.1.617.2 (delta) Spikes, as well as an authentic P.1 SARS-CoV-2 isolate. Neutralizing antibodies did not wane even after 5 months, making this kind of vaccine a likely candidate to enter clinical trials.

9.
Pharmacol Res Perspect ; 7(6): e00531, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31687162

RESUMEN

Glucocorticoids are among the most effective drugs to treat asthma. However, the severe adverse effects associated generate the need for its therapeutic optimization. Conversely, though histamine is undoubtedly related to asthma development, there is a lack of efficacy of antihistamines in controlling its symptoms, which prevents their clinical application. We have reported that antihistamines potentiate glucocorticoids' responses in vitro and recent observations have indicated that the coadministration of an antihistamine and a synthetic glucocorticoid has synergistic effects on a murine model of allergic rhinitis. Here, the aim of this work is to establish if this therapeutic combination could be beneficial in a murine model of asthma. We used an allergen-induced model of asthma (employing ovalbumin) to evaluate the effects of the synthetic glucocorticoid dexamethasone combined with the antihistamine azelastine. Our results indicate that the cotreatment with azelastine and a suboptimal dose of dexamethasone can improve allergic lung inflammation as shown by a decrease in eosinophils in bronchoalveolar lavage, fewer peribronchial and perivascular infiltrates, and mucin-producing cells. In addition, serum levels of allergen-specific IgE and IgG1 were also reduced, as well as the expression of lung inflammatory-related genes IL-4, IL-5, Muc5AC, and Arginase I. The potentiation of dexamethasone effects by azelastine could allow to reduce the effective glucocorticoid dose needed to achieve a therapeutic effect. These findings provide first new insights into the potential benefits of glucocorticoids and antihistamines combination for the treatment of asthma and grants further research to evaluate this approach in other related inflammatory conditions.


Asunto(s)
Antiasmáticos/farmacología , Asma/tratamiento farmacológico , Dexametasona/farmacología , Ftalazinas/farmacología , Administración Intranasal , Animales , Antiasmáticos/uso terapéutico , Asma/sangre , Asma/inmunología , Asma/patología , Dexametasona/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Femenino , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Células HEK293 , Antagonistas de los Receptores Histamínicos H1 no Sedantes/farmacología , Antagonistas de los Receptores Histamínicos H1 no Sedantes/uso terapéutico , Humanos , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Ratones , Ovalbúmina/inmunología , Ftalazinas/uso terapéutico , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/inmunología
10.
J Dermatol Sci ; 96(3): 143-150, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31735466

RESUMEN

BACKGROUND: Supporting the hypothesis thatT. gondii infection protects against allergy in humans we previously demonstrated that this infection can modulate not only the susceptibility to develop respiratory allergies in mice but also suppresses allergic responses at systemic level. This latter finding suggests that T. gondii infection could prevent the onset of other allergic diseases, such as atopic dermatitis. At present, few studies have investigated the modulation of atopic dermatitis by parasite infections. OBJECTIVE: Here, we sought to investigate whether chronic infection with T. gondii is capable of modulating the development of atopic dermatitis. METHODS: Chronically infected mice were sensitized by repeated epicutaneous ovalbumin administration. Skin histopathology, humoral response, cytokine production and innate type-II lymphoid cells (ILC2) were assessed. RESULTS: A marked reduction in epidermal thickness and dermal inflammatory infiltrate along with a reduction in mast cell count was observed in infected mice compared to non-infected mice. These results correlated with a diminished TH2 and TH1 allergen specific response. Reduced type-II IL-4 and IL-5 cytokines were already detected during the first 24 h of allergen sensitization in splenocytes and draining lymph nodes from infected mice. Moreover, this reduced type-II profile in chronically infected animals correlated with diminished ILC2 number in draining lymph nodes. CONCLUSION: Chronic infection withT. gondii prevents the development of atopic dermatitis. The diminished susceptibility seems to result from changes in type-II innate immune response that may lead to the induction of a deficient TH2 response and consequently to a lower susceptibility to develop atopic dermatitis.


Asunto(s)
Dermatitis Atópica/prevención & control , Toxoplasmosis/inmunología , Animales , Enfermedad Crónica , Ratones Endogámicos BALB C , Toxoplasma
11.
PLoS One ; 12(10): e0187002, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29073215

RESUMEN

Serine-proteases are important players in the pathogenesis of asthma, promoting inflammation and tissue remodeling. It's also known that many serine protease inhibitors display immunomodulatory properties. TgPI-1 is a Toxoplasma gondii protein that exhibits broad spectrum inhibitory activity against serine proteases. In view of the increased prevalence of atopic disorders and the need to develop new treatment strategies we sought to investigate the potential of TgPI-1 for treating respiratory allergies. For this purpose, we developed a therapeutic experimental model. BALB/c mice were rendered allergic by intraperitoneal ovalbumin-alum sensitization and airway-challenged. Once the asthmatic phenotype was achieved, mice were intranasally treated with rTgPI-1 alone or with a mixture of rTgPI-1 and ovalbumin (OVA). A week later mice were given a secondary aerosol challenge. Treatment with rTgPI-1 alone or co-administered with OVA diminished bronchoalveolar eosinophilia, mucus production and peribronchial lung infiltration. This effect was accompanied by a lung resistance reduction of 26.3% and 50.3% respectively. Both treatments resulted in the production of lower levels of IL-4, IL-5, IFN-γ and regulatory IL-10 by thoracic lymph node cells stimulated with OVA. Interestingly, significant decreases in OVA specific IgE and T cell proliferation, and increases in FoxP3+ T cells at local and systemic levels were only detected when the inhibitor was administered along with OVA. These results show that both rTgPI-1 treatments reduced asthma hallmarks. However, co-administration of the inhibitor with the allergen was more effective. Hence, rTgPI-1 emerges as a novel adjuvant candidate for asthma treatment.


Asunto(s)
Asma/tratamiento farmacológico , Inhibidores de Serina Proteinasa/farmacología , Toxoplasma , Alérgenos/inmunología , Animales , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Especificidad de Anticuerpos , Asma/sangre , Asma/inmunología , Proliferación Celular/efectos de los fármacos , Citocinas/biosíntesis , Interacciones Farmacológicas , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/uso terapéutico , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Inhibidores de Serina Proteinasa/uso terapéutico , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
12.
Immunobiology ; 220(5): 641-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25532793

RESUMEN

The increased prevalence of allergies in developed countries has been attributed to a reduction of some infections. Supporting epidemiological studies, we previously showed that both acute and chronic Toxoplasma gondii infection can diminish allergic airway inflammation in BALB/c mice. The mechanisms involved when sensitization occurs during acute phase would be related to the strong Th1 response induced by the parasite. Here, we further investigated the mechanisms involved in T. gondii allergy protection in mice sensitized during acute T. gondii infection. Adoptive transference assays and ex vivo co-cultures experiments showed that not only thoracic lymph node cells from infected and sensitized mice but also from non-sensitized infected animals diminished both allergic lung inflammation and the proliferation of effector T cells from allergic mice. This ability was found to be contact-independent and correlated with high levels of CD4(+)FoxP3(+) cells. IL-10 would not be involved in allergy suppression since IL-10-deficient mice behaved similar to wild type mice. Our results extend earlier work and show that, in addition to immune deviation, acute T. gondii infection can suppress allergic airway inflammation through immune suppression.


Asunto(s)
Neumonía/inmunología , Hipersensibilidad Respiratoria/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Toxoplasma/inmunología , Toxoplasmosis Animal/inmunología , Enfermedad Aguda , Traslado Adoptivo , Animales , Proliferación Celular , Células Cultivadas , Humanos , Terapia de Inmunosupresión , Ratones , Ratones Endogámicos BALB C , Neumonía/complicaciones , Hipersensibilidad Respiratoria/complicaciones , Linfocitos T Reguladores/parasitología , Linfocitos T Reguladores/trasplante , Toxoplasmosis Animal/complicaciones
13.
Acta Trop ; 150: 159-65, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26200784

RESUMEN

Subunit-based vaccines are safer than live or attenuated pathogen vaccines, although they are generally weak immunogens. Thus, proper combination of immunization strategies and adjuvants are needed to increase their efficacy. We have previously protected C3H/HeN mice from Toxoplasma gondii infection by immunization with the serine protease inhibitor-1 (TgPI-1) in combination with alum. In this work, we explore an original vaccination protocol that combines administration of recombinant TgPI-1 by intradermal and intranasal routes in order to enhance protection in the highly susceptible C57BL/6 strain. Mice primed intradermally with rTgPI-1 plus alum and boosted intranasally with rTgPI-1 plus CpG-ODN elicited a strong specific Th1/Th2 humoral response, along with a mucosal immune response characterized by specific-IgA in intestinal lavages. A positive cellular response of mesentheric lymph node cells and Th1/Th2 cytokine secretion in the ileon were also detected. When immunized mice were challenged with the cystogenic Me49 T. gondii strain, they displayed up to 62% reduction in brain parasite burden. Moreover, adoptive transfer of mesenteric lymph node cells from vaccinated to naïve mice induced significant protection against infection. These results demonstrate that this strategy that combines the administration of TgPI-1 by two different routes, intradermal priming and intranasal boost, improves protective immunity against T. gondii chronic infection in highly susceptible mice.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Proteínas Protozoarias/administración & dosificación , Vacunas Antiprotozoos/inmunología , Toxoplasma/inmunología , Toxoplasmosis Animal/prevención & control , Administración Intranasal , Compuestos de Alumbre/administración & dosificación , Animales , Esquema de Medicación , Femenino , Inmunidad Mucosa , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos C57BL , Toxoplasmosis Animal/inmunología , Vacunación
14.
PLoS One ; 7(8): e43420, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952678

RESUMEN

Allergic asthma is an inflammatory disorder characterized by infiltration of the airway wall with inflammatory cells driven mostly by activation of Th2-lymphocytes, eosinophils and mast cells. There is a link between increased allergy and a reduction of some infections in Western countries. Epidemiological data also show that respiratory allergy is less frequent in people exposed to orofecal and foodborne microbes such as Toxoplasma gondii. We previously showed that both acute and chronic parasite T. gondii infection substantially blocked development of airway inflammation in adult BALB/c mice. Based on the high levels of IFN-γ along with the reduction of Th2 phenotype, we hypothesized that the protective effect might be related to the strong Th1 immune response elicited against the parasite. However, other mechanisms could also be implicated. The possibility that regulatory T cells inhibit allergic diseases has received growing support from both animal and human studies. Here we investigated the cellular mechanisms involved in T. gondii induced protection against allergy. Our results show for the first time that thoracic lymph node cells from mice sensitized during chronic T. gondii infection have suppressor activity. Suppression was detected both in vitro, on allergen specific T cell proliferation and in vivo, on allergic lung inflammation after adoptive transference from infected/sensitized mice to previously sensitized animals. This ability was found to be contact-independent and correlated with high levels of TGF-ß and CD4(+)FoxP3(+) cells.


Asunto(s)
Asma/metabolismo , Hipersensibilidad/metabolismo , Inflamación/patología , Toxoplasmosis/fisiopatología , Animales , Lavado Broncoalveolar , Antígenos CD4/biosíntesis , Factores de Transcripción Forkhead/metabolismo , Interferón gamma/metabolismo , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Noqueados , Hipersensibilidad Respiratoria , Células Th2/citología , Células Th2/parasitología , Toxoplasma/metabolismo , Toxoplasmosis/inmunología , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA