Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(12): 2724-2739.e10, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34687607

RESUMEN

Nitric oxide (NO) is an important antimicrobial effector but also prevents unnecessary tissue damage by shutting down the recruitment of monocyte-derived phagocytes. Intracellular pathogens such as Leishmania major can hijack these cells as a niche for replication. Thus, NO might exert containment by restricting the availability of the cellular niche required for efficient pathogen proliferation. However, such indirect modes of action remain to be established. By combining mathematical modeling with intravital 2-photon biosensors of pathogen viability and proliferation, we show that low L. major proliferation results not from direct NO impact on the pathogen but from reduced availability of proliferation-permissive host cells. Although inhibiting NO production increases recruitment of these cells, and thus pathogen proliferation, blocking cell recruitment uncouples the NO effect from pathogen proliferation. Therefore, NO fulfills two distinct functions for L. major containment: permitting direct killing and restricting the supply of proliferation-permissive host cells.


Asunto(s)
Leishmania major/fisiología , Leishmaniasis/inmunología , Macrófagos/inmunología , Óxido Nítrico/metabolismo , Animales , Procesos de Crecimiento Celular , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Humanos , Microscopía Intravital , Ratones , Ratones Endogámicos C57BL , Modelos Teóricos
2.
Proc Natl Acad Sci U S A ; 120(10): e2220828120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848551

RESUMEN

Trypanosomatid pathogens are transmitted by blood-feeding insects, causing devastating human infections. These parasites show important phenotypic shifts that often impact parasite pathogenicity, tissue tropism, or drug susceptibility. The evolutionary mechanisms that allow for the selection of such adaptive phenotypes remain only poorly investigated. Here, we use Leishmania donovani as a trypanosomatid model pathogen to assess parasite evolutionary adaptation during experimental sand fly infection. Comparing the genome of the parasites before and after sand fly infection revealed a strong population bottleneck effect as judged by allele frequency analysis. Apart from random genetic drift caused by the bottleneck effect, our analyses revealed haplotype and allelic changes during sand fly infection that seem under natural selection given their convergence between independent biological replicates. Our analyses further uncovered signature mutations of oxidative DNA damage in the parasite genomes after sand fly infection, suggesting that Leishmania suffers from oxidative stress inside the insect digestive tract. Our results propose a model of Leishmania genomic adaptation during sand fly infection, with oxidative DNA damage and DNA repair processes likely driving haplotype and allelic selection. The experimental and computational framework presented here provides a useful blueprint to assess evolutionary adaptation of other eukaryotic pathogens inside their insect vectors, such as Plasmodium spp, Trypanosoma brucei, and Trypanosoma cruzi.


Asunto(s)
Leishmania donovani , Psychodidae , Humanos , Animales , Estrés Oxidativo/genética , Reparación del ADN/genética , Mutación
3.
PLoS Pathog ; 18(3): e1010375, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35294501

RESUMEN

The protozoan parasite Leishmania donovani causes fatal human visceral leishmaniasis in absence of treatment. Genome instability has been recognized as a driver in Leishmania fitness gain in response to environmental change or chemotherapy. How genome instability generates beneficial phenotypes despite potential deleterious gene dosage effects is unknown. Here we address this important open question applying experimental evolution and integrative systems approaches on parasites adapting to in vitro culture. Phenotypic analyses of parasites from early and late stages of culture adaptation revealed an important fitness tradeoff, with selection for accelerated growth in promastigote culture (fitness gain) impairing infectivity (fitness costs). Comparative genomics, transcriptomics and proteomics analyses revealed a complex regulatory network associated with parasite fitness gain, with genome instability causing highly reproducible, gene dosage-independent and -dependent changes. Reduction of flagellar transcripts and increase in coding and non-coding RNAs implicated in ribosomal biogenesis and protein translation were not correlated to dosage changes of the corresponding genes, revealing a gene dosage-independent, post-transcriptional mechanism of regulation. In contrast, abundance of gene products implicated in post-transcriptional regulation itself correlated to corresponding gene dosage changes. Thus, RNA abundance during parasite adaptation is controled by direct and indirect gene dosage changes. We correlated differential expression of small nucleolar RNAs (snoRNAs) with changes in rRNA modification, providing first evidence that Leishmania fitness gain in culture may be controlled by post-transcriptional and epitranscriptomic regulation. Our findings propose a novel model for Leishmania fitness gain in culture, where differential regulation of mRNA stability and the generation of modified ribosomes may potentially filter deleterious from beneficial gene dosage effects and provide proteomic robustness to genetically heterogenous, adapting parasite populations. This model challenges the current, genome-centric approach to Leishmania epidemiology and identifies the Leishmania transcriptome and non-coding small RNome as potential novel sources for the discovery of biomarkers that may be associated with parasite phenotypic adaptation in clinical settings.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Regulación de la Expresión Génica , Inestabilidad Genómica , Humanos , Leishmania donovani/genética , Leishmaniasis Visceral/parasitología , Proteómica
4.
Nucleic Acids Res ; 50(6): e36, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-34928370

RESUMEN

Genome instability has been recognized as a key driver for microbial and cancer adaptation and thus plays a central role in many diseases. Genome instability encompasses different types of genomic alterations, yet most available genome analysis software are limited to just one type of mutation. To overcome this limitation and better understand the role of genetic changes in enhancing pathogenicity we established GIP, a novel, powerful bioinformatic pipeline for comparative genome analysis. Here, we show its application to whole genome sequencing datasets of Leishmania, Plasmodium, Candida and cancer. Applying GIP on available data sets validated our pipeline and demonstrated the power of our tool to drive biological discovery. Applied to Plasmodium vivax genomes, our pipeline uncovered the convergent amplification of erythrocyte binding proteins and identified a nullisomic strain. Re-analyzing genomes of drug adapted Candida albicans strains revealed correlated copy number variations of functionally related genes, strongly supporting a mechanism of epistatic adaptation through interacting gene-dosage changes. Our results illustrate how GIP can be used for the identification of aneuploidy, gene copy number variations, changes in nucleic acid sequences, and chromosomal rearrangements. Altogether, GIP can shed light on the genetic bases of cell adaptation and drive disease biomarker discovery.


Asunto(s)
Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Inestabilidad Genómica , Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen , Humanos , Neoplasias/genética
5.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903666

RESUMEN

How genome instability is harnessed for fitness gain despite its potential deleterious effects is largely elusive. An ideal system to address this important open question is provided by the protozoan pathogen Leishmania, which exploits frequent variations in chromosome and gene copy number to regulate expression levels. Using ecological genomics and experimental evolution approaches, we provide evidence that Leishmania adaptation relies on epistatic interactions between functionally associated gene copy number variations in pathways driving fitness gain in a given environment. We further uncover posttranscriptional regulation as a key mechanism that compensates for deleterious gene dosage effects and provides phenotypic robustness to genetically heterogenous parasite populations. Finally, we correlate dynamic variations in small nucleolar RNA (snoRNA) gene dosage with changes in ribosomal RNA 2'-O-methylation and pseudouridylation, suggesting translational control as an additional layer of parasite adaptation. Leishmania genome instability is thus harnessed for fitness gain by genome-dependent variations in gene expression and genome-independent compensatory mechanisms. This allows for polyclonal adaptation and maintenance of genetic heterogeneity despite strong selective pressure. The epistatic adaptation described here needs to be considered in Leishmania epidemiology and biomarker discovery and may be relevant to other fast-evolving eukaryotic cells that exploit genome instability for adaptation, such as fungal pathogens or cancer.


Asunto(s)
Adaptación Fisiológica/genética , Epistasis Genética , Genoma de Protozoos , Inestabilidad Genómica , Leishmania/genética , Dosificación de Gen , Aptitud Genética , Humanos , Leishmaniasis/parasitología
6.
J Cell Sci ; 134(5)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32501279

RESUMEN

Leishmania spp. are obligate intracellular parasites that infect phagocytes, notably macrophages. No information is available on how Leishmania parasites respond to pyroptosis of their host cell, which is known to limit microbial infection. Here, we analyzed the pyroptotic process and the fate of intracellular amastigotes at the single-cell level using high-content real-time imaging. Bone marrow-derived macrophages were infected with virulent Leishmania amazonensis amastigotes and sequentially treated with lipopolysaccharide and ATP to induce pyroptosis. Real-time monitoring identified distinct pyroptotic phases, including rapid decay of the parasitophorous vacuole (PV), progressive cell death and translocation of the luminal PV membrane to the cell surface in 40% of macrophages, resulting in the extracellular exposure of amastigotes that remained anchored to PV membranes. Electron microscopy analyses revealed an exclusive polarized orientation of parasites, with the anterior pole exposed toward the extracellular milieu, and the parasite posterior pole attached to the PV membrane. Exposed parasites retained their full infectivity towards naïve macrophages suggesting that host cell pyroptosis may contribute to parasite dissemination.


Asunto(s)
Leishmania mexicana , Leishmania , Animales , Células Cultivadas , Macrófagos , Ratones , Ratones Endogámicos BALB C , Piroptosis
7.
Immunity ; 37(1): 147-57, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22727490

RESUMEN

Effector T cells are critical for clearance of pathogens from sites of infection. Like cytotoxic CD8(+) T cells, CD4(+) helper T cells have been shown to deliver effector molecules directionally toward the immunological synapse, suggesting that infected cells need to be engaged individually to receive effector signals. In contrast, we show here that CD4(+) T cells stably contacted a minority of infected cells, yet these interactions triggered intracellular defense mechanisms in bystander cells in vivo. By using a functional read-out, we provide evidence that this effector bystander activity extends via a gradient of IFN-γ more than 80 µm beyond the site of antigen presentation, promoting pathogen clearance in the absence of immunological synapse formation. Our results thus demonstrate that CD4(+) T cells can exert their protective activity by engaging a minority of infected cells.


Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos T CD4-Positivos/inmunología , Citocinas/inmunología , Animales , Efecto Espectador/inmunología , Dermis/inmunología , Dermis/parasitología , Interferón gamma/inmunología , Leishmania major/inmunología , Leishmaniasis Cutánea/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo
8.
Mol Microbiol ; 100(6): 923-7, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26991431

RESUMEN

Reverse genetics in Leishmania spp has gained importance beyond basic research as efforts increase to discover and validate new drug targets. Often, the most promising targets are essential for viability of the parasites, defying a genetic analysis by current gene replacement strategies. Duncan et al. demonstrate the applicability of DiCre recombination in Leishmania for induced replacement of the kinase CRK3 gene in promastigotes. DiCre gene replacement leads to the rapid loss of the gene and allows monitoring the phenotypic effects of the loss of function, eliminating the need for prolonged cultivation and selection. Implementation of the DiCre approach will allow functional genetics of the most important of Leishmania genes and is likely to boost genetic research and drug target discovery.


Asunto(s)
Leishmania/genética , Genética Inversa/métodos , Sirolimus/farmacología , Antiprotozoarios/farmacología , Integrasas/genética , Integrasas/metabolismo , Leishmania/efectos de los fármacos , Leishmania/enzimología , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-crk/genética
9.
Antimicrob Agents Chemother ; 60(5): 2822-33, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26902771

RESUMEN

Existing therapies for leishmaniases present significant limitations, such as toxic side effects, and are rendered inefficient by parasite resistance. It is of utmost importance to develop novel drugs targeting Leishmania that take these two limitations into consideration. We thus chose a target-based approach using an exoprotein kinase, Leishmania casein kinase 1.2 (LmCK1.2) that was recently shown to be essential for intracellular parasite survival and infectivity. We developed a four-step pipeline to identify novel selective antileishmanial compounds. In step 1, we screened 5,018 compounds from kinase-biased libraries with Leishmania and mammalian CK1 in order to identify hit compounds and assess their specificity. For step 2, we selected 88 compounds among those with the lowest 50% inhibitory concentration to test their biological activity on host-free parasites using a resazurin reduction assay and on intramacrophagic amastigotes using a high content phenotypic assay. Only 75 compounds showed antileishmanial activity and were retained for step 3 to evaluate their toxicity against mouse macrophages and human cell lines. The four compounds that displayed a selectivity index above 10 were then assessed for their affinity to LmCK1.2 using a target deconvolution strategy in step 4. Finally, we retained two compounds, PP2 and compound 42, for which LmCK1.2 seems to be the primary target. Using this four-step pipeline, we identify from several thousand molecules, two lead compounds with a selective antileishmanial activity.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Animales , Antiprotozoarios/química , Quinasa de la Caseína I/metabolismo , Línea Celular , Descubrimiento de Drogas , Humanos , Leishmania/metabolismo , Macrófagos/parasitología , Isoformas de Proteínas/metabolismo
10.
PLoS Pathog ; 10(9): e1004347, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25232945

RESUMEN

Protozoan pathogens of the genus Leishmania have evolved unique signaling mechanisms that can sense changes in the host environment and trigger adaptive stage differentiation essential for host cell infection. The signaling mechanisms underlying parasite development remain largely elusive even though Leishmania mitogen-activated protein kinases (MAPKs) have been linked previously to environmentally induced differentiation and virulence. Here, we unravel highly unusual regulatory mechanisms for Leishmania MAP kinase 10 (MPK10). Using a transgenic approach, we demonstrate that MPK10 is stage-specifically regulated, as its kinase activity increases during the promastigote to amastigote conversion. However, unlike canonical MAPKs that are activated by dual phosphorylation of the regulatory TxY motif in the activation loop, MPK10 activation is independent from the phosphorylation of the tyrosine residue, which is largely constitutive. Removal of the last 46 amino acids resulted in significantly enhanced MPK10 activity both for the recombinant and transgenic protein, revealing that MPK10 is regulated by an auto-inhibitory mechanism. Over-expression of this hyperactive mutant in transgenic parasites led to a dominant negative effect causing massive cell death during amastigote differentiation, demonstrating the essential nature of MPK10 auto-inhibition for parasite viability. Moreover, phosphoproteomics analyses identified a novel regulatory phospho-serine residue in the C-terminal auto-inhibitory domain at position 395 that could be implicated in kinase regulation. Finally, we uncovered a feedback loop that limits MPK10 activity through dephosphorylation of the tyrosine residue of the TxY motif. Together our data reveal novel aspects of protein kinase regulation in Leishmania, and propose MPK10 as a potential signal sensor of the mammalian host environment, whose intrinsic pre-activated conformation is regulated by auto-inhibition.


Asunto(s)
Retroalimentación Fisiológica , Proteínas Fluorescentes Verdes/metabolismo , Leishmania donovani/enzimología , Leishmaniasis Visceral/parasitología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Secuencia de Aminoácidos , Western Blotting , Supervivencia Celular , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Humanos , Leishmania donovani/crecimiento & desarrollo , Leishmania donovani/patogenicidad , Leishmaniasis Visceral/enzimología , Leishmaniasis Visceral/patología , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Fosforilación , Homología de Secuencia de Aminoácido
11.
Cytokine ; 81: 101-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26978550

RESUMEN

Staphylococcus aureus is one of the versatile Gram positive bacteria causing a range of diseases. Upon challenge, host immune cells recognize S. aureus and mount diverse immune responses including production of pro-inflammatory cytokines such as IL-1ß and TNF-α. These cytokines are important mediators of inflammation which can be detected via various immunological methods such as enzyme linked immunosorbent assay (ELISA) and immunoblotting. In the current study, we found that a number of clinical isolates as well as laboratory strains of S. aureus exhibited cross reactivity with ELISA antibodies for murine IL-1ß and TNF-α assays. This cross reactivity generates exaggerated false positive signals which can be a source of discrepancy for the understanding of real immune responses against S. aureus infection by host immune cells.


Asunto(s)
Reacciones Cruzadas/inmunología , Citocinas/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Macrófagos/inmunología , Staphylococcus aureus/inmunología , Animales , Western Blotting , Células Cultivadas , Citocinas/genética , Interacciones Huésped-Patógeno/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética , Transducción de Señal/inmunología , Especificidad de la Especie , Staphylococcus aureus/clasificación , Staphylococcus aureus/genética , Factor de Necrosis Tumoral alfa/inmunología
12.
Cell Microbiol ; 17(5): 632-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25801803

RESUMEN

Across bacterial, archaeal and eukaryotic kingdoms, heat shock proteins (HSPs) are defined as a class of highly conserved chaperone proteins that are rapidly induced in response to temperature increase through dedicated heat shock transcription factors. While this transcriptional response governs cellular adaptation of fungal, plant and animal cells to thermic shock and other forms of stress, early-branching eukaryotes of the kinetoplastid order, including trypanosomatid parasites, lack classical mechanisms of transcriptional regulation and show largely constitutive expression of HSPs, thus raising important questions on the function of HSPs in the absence of stress and the regulation of their chaperone activity in response to environmental adversity. Understanding parasite-specific mechanisms of stress-response regulation is especially relevant for protozoan parasites of the genus Leishmania that are adapted for survival inside highly toxic phagolysosomes of host macrophages causing the various immuno-pathologies of leishmaniasis. Here we review recent advances on the function and regulation of chaperone activities in these kinetoplastid pathogens and propose a new model for stress-response regulation through a reciprocal regulatory relationship between stress kinases and chaperones that may be relevant for parasite-adaptive differentiation and infectivity.


Asunto(s)
Regulación de la Expresión Génica , Leishmania/fisiología , Chaperonas Moleculares/metabolismo , Procesamiento Proteico-Postraduccional , Estrés Fisiológico , Leishmania/genética , Leishmania/metabolismo
13.
J Eukaryot Microbiol ; 63(6): 823-833, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27216143

RESUMEN

Protozoan parasites of the genus Leishmania adapt to their arthropod and vertebrate hosts through the development of defined life cycle stages. Stage differentiation is triggered by environmental stress factors and has been linked to parasite chaperone activities. Using a null mutant approach we previously revealed important, nonredundant functions of the cochaperone cyclophilin 40 in L. donovani-infected macrophages. Here, we characterized in more detail the virulence defect of cyp40-/- null mutants. In vitro viability assays, infection tests using macrophages, and mixed infection experiments ruled out a defect of cyp40-/- parasites in resistance to oxidative and hydrolytic stresses encountered inside the host cell phagolysosome. Investigation of the CyP40-dependent proteome by quantitative 2D-DiGE analysis revealed up regulation of various stress proteins in the null mutant, presumably a response to compensate for the lack of CyP40. Applying transmission electron microscopy we showed accumulation of vesicular structures in the flagellar pocket of cyp40-/- parasites that we related to a significant increase in exosome production, a phenomenon previously linked to the parasite stress response. Together these data suggest that cyp40-/- parasites experience important intrinsic homeostatic stress that likely abrogates parasite viability during intracellular infection.


Asunto(s)
Ciclofilinas/deficiencia , Leishmania donovani/enzimología , Leishmaniasis Visceral/parasitología , Proteínas Protozoarias/genética , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Electroforesis en Gel Bidimensional , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Leishmania donovani/genética , Leishmania donovani/crecimiento & desarrollo , Leishmania donovani/metabolismo , Macrófagos/parasitología , Ratones , Ratones Endogámicos C57BL , Mutación , Fenotipo , Proteínas Protozoarias/metabolismo
14.
Mol Cell Proteomics ; 13(7): 1787-99, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24741111

RESUMEN

Leishmania are obligatory intracellular parasitic protozoa that cause a wide range of diseases in humans, cycling between extracellular promastigotes in the mid-gut of sand flies and intracellular amastigotes in the phagolysosomes of mammalian macrophages. Although many of the molecular mechanisms of development inside macrophages remain a mystery, the development of a host-free system that simulates phagolysosome conditions (37 °C and pH 5.5) has provided new insights into these processes. The time course of promastigote-to-amastigote differentiation can be divided into four morphologically distinct phases: I, signal perception (0-5 h after exposure); II, movement cessation and aggregation (5-10 h); III, amastigote morphogenesis (10-24 h); and IV, maturation (24-120 h). Transcriptomic and proteomic analyses have indicated that differentiation is a coordinated process that results in adaptation to life inside phagolysosomes. Recent phosphoproteomic analysis revealed extensive differences in phosphorylation between promastigotes and amastigotes and identified stage-specific phosphorylation motifs. We hypothesized that the differentiation signal activates a phosphorylation pathway that initiates Leishmania transformation, and here we used isobaric tags for relative and absolute quantitation to interrogate the dynamics of changes in the phosphorylation profile during Leishmania donovani promastigote-to-amastigote differentiation. Analysis of 163 phosphopeptides (from 106 proteins) revealed six distinct kinetic profiles; with increases in phosphorylation predominated during phases I and III, whereas phases II and IV were characterized by greater dephosphorylation. Several proteins (including a protein kinase) were phosphorylated in phase I after exposure to the complete differentiation signal (i.e. signal-specific; 37 °C and pH 5.5), but not after either of the physical parameters separately. Several other protein kinases (including regulatory subunits) and phosphatases also showed changes in phosphorylation during differentiation. This work constitutes the first genome-scale interrogation of phosphorylation dynamics in a parasitic protozoa, revealing the outline of a signaling pathway during Leishmania differentiation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (identifier PXD000671). Data can be viewed using ProteinPilot™ software.


Asunto(s)
Diferenciación Celular/fisiología , Leishmania donovani/citología , Leishmania donovani/metabolismo , Proteínas Protozoarias/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Fosforilación , Proteómica , Transducción de Señal
15.
Proteomics ; 15(17): 2999-3019, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25959087

RESUMEN

Protein phosphorylation is one of the most studied post-translational modifications that is involved in different cellular events in Leishmania. In this study, we performed a comparative phosphoproteomics analysis of potassium antimonyl tartrate (SbIII)-resistant and -susceptible lines of Leishmania braziliensis using a 2D-DIGE approach followed by MS. In order to investigate the differential phosphoprotein abundance associated with the drug-induced stress response and SbIII-resistance mechanisms, we compared nontreated and SbIII-treated samples of each line. Pair wise comparisons revealed a total of 116 spots that showed a statistically significant difference in phosphoprotein abundance, including 11 and 34 spots specifically correlated with drug treatment and resistance, respectively. We identified 48 different proteins distributed into seven biological process categories. The category "protein folding/chaperones and stress response" is mainly implicated in response to SbIII treatment, while the categories "antioxidant/detoxification," "metabolic process," "RNA/DNA processing," and "protein biosynthesis" are modulated in the case of antimony resistance. Multiple sequence alignments were performed to validate the conservation of phosphorylated residues in nine proteins identified here. Western blot assays were carried out to validate the quantitative phosphoproteome analysis. The results revealed differential expression level of three phosphoproteins in the lines analyzed. This novel study allowed us to profile the L. braziliensis phosphoproteome, identifying several potential candidates for biochemical or signaling networks associated with antimony resistance phenotype in this parasite.


Asunto(s)
Antimonio/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmania braziliensis/metabolismo , Fosfoproteínas/análisis , Electroforesis Bidimensional Diferencial en Gel/métodos , Secuencia de Aminoácidos , Simulación por Computador , Resistencia a Medicamentos/efectos de los fármacos , Datos de Secuencia Molecular , Fosfoproteínas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Protozoarias/análisis , Proteínas Protozoarias/metabolismo , Reproducibilidad de los Resultados
16.
Mol Microbiol ; 93(1): 146-66, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24823804

RESUMEN

Leishmania parasites cause important human morbidity and mortality. Essential Leishmania genes escape genetic assessment by loss-of-function analyses due to lethal null mutant phenotypes, even though these genes and their products are biologically most significant and represent validated drug targets. Here we overcome this limitation using a facilitated null mutant approach applied for the functional genetic analysis of the MAP kinase LmaMPK4. This system relies on the episomal expression of the target gene from vector pXNG that expresses the Herpes simplex virus thymidine kinase gene thus rendering transgenic parasites susceptible for negative selection using the antiviral drug ganciclovir. Using this system we establish the genetic proof of LmaMPK4 as essential kinase in promastigotes. LmaMPK4 structure/function analysis by plasmid shuffle allowed us to identify regulatory kinase sequence elements relevant for chemotherapeutic intervention. A partial null mutant, expressing an MPK4 derivative with altered ATP-binding properties, showed defects in metacyclogenesis, establishing a first link of MPK4 function to parasite differentiation. The approaches presented here are broadly applicable to any essential gene in Leishmania thus overcoming major bottlenecks for their functional genetic analysis and their exploitation for structure-informed drug development.


Asunto(s)
Genes Esenciales , Leishmania major/crecimiento & desarrollo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Animales , Muerte Celular , Femenino , Ganciclovir/farmacología , Técnicas de Inactivación de Genes , Genes Virales , Leishmania major/efectos de los fármacos , Leishmania major/enzimología , Leishmaniasis Cutánea/microbiología , Leishmaniasis Cutánea/patología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mutación , Plásmidos/genética , Plásmidos/metabolismo , Simplexvirus/enzimología , Timidina Quinasa/genética , Timidina Quinasa/metabolismo
17.
Mol Microbiol ; 93(1): 80-97, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24811325

RESUMEN

During its life cycle, the protozoan pathogen Leishmania donovani is exposed to contrasting environments inside insect vector and vertebrate host, to which the parasite must adapt for extra- and intracellular survival. Combining null mutant analysis with phosphorylation site-specific mutagenesis and functional complementation we genetically tested the requirement of the L. donovani chaperone cyclophilin 40 (LdCyP40) for infection. Targeted replacement of LdCyP40 had no effect on parasite viability, axenic amastigote differentiation, and resistance to various forms of environmental stress in culture, suggesting important functional redundancy to other parasite chaperones. However, ultrastructural analyses and video microscopy of cyp40-/- promastigotes uncovered important defects in cell shape, organization of the subpellicular tubulin network and motility at stationary growth phase. More importantly, cyp40-/- parasites were unable to establish intracellular infection in murine macrophages and were eliminated during the first 24 h post infection. Surprisingly, cyp40-/- infectivity was restored in complemented parasites expressing a CyP40 mutant of the unique S274 phosphorylation site. Together our data reveal non-redundant CyP40 functions in parasite cytoskeletal remodelling relevant for the development of infectious parasites in vitro independent of its phosphorylation status, and provide a framework for the genetic analysis of Leishmania-specific phosphorylation sites and their role in regulating parasite protein function.


Asunto(s)
Ciclofilinas/genética , Ciclofilinas/metabolismo , Leishmania donovani/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Animales , Citoesqueleto/metabolismo , Leishmania donovani/ultraestructura , Leishmaniasis Visceral/parasitología , Macrófagos/parasitología , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Fosforilación , Estrés Fisiológico
18.
Antimicrob Agents Chemother ; 58(3): 1501-15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24366737

RESUMEN

Protein kinase inhibitors have emerged as new drugs in various therapeutic areas, including leishmaniasis, an important parasitic disease. Members of the Leishmania casein kinase 1 (CK1) family represent promising therapeutic targets. Leishmania casein kinase 1 isoform 2 (CK1.2) has been identified as an exokinase capable of phosphorylating host proteins, thus exerting a potential immune-suppressive action on infected host cells. Moreover, its inhibition reduces promastigote growth. Despite these important properties, its requirement for intracellular infection and its chemical validation as a therapeutic target in the disease-relevant amastigote stage remain to be established. In this study, we used a multidisciplinary approach combining bioinformatics, biochemical, and pharmacological analyses with a macrophage infection assay to characterize and define Leishmania CK1.2 as a valid drug target. We show that recombinant and transgenic Leishmania CK1.2 (i) can phosphorylate CK1-specific substrates, (ii) is sensitive to temperature, and (iii) is susceptible to CK1-specific inhibitors. CK1.2 is constitutively expressed at both the promastigote insect stage and the vertebrate amastigote stage. We further demonstrated that reduction of CK1 activity by specific inhibitors, such as D4476, blocks promastigote growth, strongly compromises axenic amastigote viability, and decreases the number of intracellular Leishmania donovani and L. amazonensis amastigotes in infected macrophages. These results underline the potential role of CK1 kinases in intracellular survival. The identification of differences in structure and inhibition profiles compared to those of mammalian CK1 kinases opens new opportunities for Leishmania CK1.2 antileishmanial drug development. Our report provides the first chemical validation of Leishmania CK1 protein kinases, required for amastigote intracellular survival, as therapeutic targets.


Asunto(s)
Quinasa de la Caseína I/efectos de los fármacos , Leishmania donovani/efectos de los fármacos , Animales , Benzamidas/farmacología , Quinasa de la Caseína I/antagonistas & inhibidores , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/fisiología , Secuencia Conservada/genética , Cricetinae/parasitología , Femenino , Imidazoles/farmacología , Indoles/farmacología , Isoquinolinas/farmacología , Leishmania donovani/enzimología , Leishmania donovani/genética , Leishmania donovani/patogenicidad , Leishmania donovani/fisiología , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Macrófagos/parasitología , Ratones Endogámicos C57BL , Floroglucinol/análogos & derivados , Floroglucinol/farmacología , Alineación de Secuencia , Tripanocidas/farmacología
19.
Cell Rep ; 43(5): 114203, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38722744

RESUMEN

Leishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Ψ), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Ψ in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Ψ and its parental strain at ∼2.4-3 Å resolution using cryo-EM. Our findings demonstrate the significance of a single Ψ on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs.


Asunto(s)
Seudouridina , ARN de Transferencia , Ribosomas , Seudouridina/metabolismo , Ribosomas/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Leishmania/metabolismo , Leishmania/genética , Microscopía por Crioelectrón , ARN Ribosómico/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , Conformación de Ácido Nucleico , Modelos Moleculares
20.
J Proteome Res ; 12(7): 3405-12, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23688256

RESUMEN

Protists of the genus Leishmania are obligatory intracellular parasites that cause a wide range of cutaneous, mucocutaneous, and visceral diseases in humans. They cycle between phagolysosomes of mammalian macrophages and the sand fly midgut, proliferating as intracellular amastigotes and extracellular promastigotes, respectively. Exposure to a lysosomal environment, i.e. acidic pH and body temperature, signals promastigotes to differentiate into amastigotes. Time course analyses indicated that Leishmania differentiation is a highly regulated and coordinated process. However, the role of posttranslational events such as protein phosphorylation in this process is still unknown. Herein, we analyzed and compared the phosphoproteomes of L. donovani amastigotes and promastigotes using an axenic host-free system that simulates parasite differentiation. Shotgun phosphopeptide analysis revealed 1614 phosphorylation residues (p-sites) corresponding to 627 proteins. The analysis indicated that the majority of the p-sites are stage-specific. Serine phosphorylation in a previously identified trypanosomatid-specific "SF" motif was significantly enriched in amastigotes. We identified a few phosophotyrosines (pY), mostly in proteins known to participate in signal transduction pathways. The analysis indicated that Leishmania contains proteins with multiple p-sites that are phosphorylated at distinct stages of the life cycle. For over half of the phosphorylation events, changes in phosphoprotein abundance did not positively correlate with changes in protein abundance, suggesting functional regulation. This study compares, for the first time, the phosphoproteins of L. donovani axenic promastigotes and amastigotes and provides the largest data set of the Leishmania phosphoproteome to date.


Asunto(s)
Secuencias de Aminoácidos/genética , Leishmania/metabolismo , Fosfoproteínas/química , Proteómica , Aminoácidos/química , Animales , Humanos , Leishmania/crecimiento & desarrollo , Estadios del Ciclo de Vida , Parásitos/química , Parásitos/metabolismo , Fagosomas/metabolismo , Fosfoproteínas/aislamiento & purificación , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA