Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 171(3): 628-641.e26, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053969

RESUMEN

Ferroptosis is a form of programmed cell death that is pathogenic to several acute and chronic diseases and executed via oxygenation of polyunsaturated phosphatidylethanolamines (PE) by 15-lipoxygenases (15-LO) that normally use free polyunsaturated fatty acids as substrates. Mechanisms of the altered 15-LO substrate specificity are enigmatic. We sought a common ferroptosis regulator for 15LO. We discovered that PEBP1, a scaffold protein inhibitor of protein kinase cascades, complexes with two 15LO isoforms, 15LO1 and 15LO2, and changes their substrate competence to generate hydroperoxy-PE. Inadequate reduction of hydroperoxy-PE due to insufficiency or dysfunction of a selenoperoxidase, GPX4, leads to ferroptosis. We demonstrated the importance of PEBP1-dependent regulatory mechanisms of ferroptotic death in airway epithelial cells in asthma, kidney epithelial cells in renal failure, and cortical and hippocampal neurons in brain trauma. As master regulators of ferroptotic cell death with profound implications for human disease, PEBP1/15LO complexes represent a new target for drug discovery.


Asunto(s)
Lesión Renal Aguda/patología , Asma/patología , Lesiones Traumáticas del Encéfalo/patología , Muerte Celular , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Lesión Renal Aguda/metabolismo , Animales , Apoptosis , Asma/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Humanos , Isoenzimas/metabolismo , Lipooxigenasa/química , Lipooxigenasa/metabolismo , Ratones , Modelos Moleculares , Oxazolidinonas/farmacología , Oxidación-Reducción , Proteínas de Unión a Fosfatidiletanolamina/química
2.
Anal Chem ; 93(23): 8143-8151, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34075742

RESUMEN

The temporo-spatial organization of different cells in the tumor microenvironment (TME) is the key to understanding their complex communication networks and the immune landscape that exists within compromised tissues. Multi-omics profiling of single-interacting cells in the native TME is critical for providing further information regarding the reprograming mechanisms leading to immunosuppression and tumor progression. This requires new technologies for biomolecular profiling of phenotypically heterogeneous cells on the same tissue sample. Here, we developed a new methodology for comprehensive lipidomic and metabolomic profiling of individual cells on frozen-hydrated tissue sections using water gas cluster ion beam secondary ion mass spectrometry ((H2O)n-GCIB-SIMS) (at 1.6 µm beam spot size), followed by profiling cell-type specific lanthanide antibodies on the same tissue section using C60-SIMS (at 1.1 µm beam spot size). We revealed distinct variations of distribution and intensities of >150 key ions (e.g., lipids and important metabolites) in different types of the TME individual cells, such as actively proliferating tumor cells as well as infiltrating immune cells. The demonstrated feasibility of SIMS imaging to integrate the multi-omics profiling in the same tissue section at the single-cell level will lead to new insights into the role of lipid reprogramming and metabolic response in normal regulation or pathogenic discoordination of cell-cell interactions in a variety of tissue microenvironments.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Iones , Lípidos , Espectrometría de Masa de Ion Secundario , Microambiente Tumoral
3.
Angew Chem Int Ed Engl ; 60(21): 11784-11788, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33684237

RESUMEN

Peroxidized phosphatidylethanolamine (PEox) species have been identified by liquid chromatography mass spectrometry (LC-MS) as predictive biomarkers of ferroptosis, a new program of regulated cell death. However, the presence and subcellular distribution of PEox in specific cell types and tissues have not been directly detected by imaging protocols. By applying gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS) imaging with a 70 keV (H2 O)n+ (n>28 000) cluster ion beam, we were able to map PEox with 1.2 µm spatial resolution at the single cell/subcellular level in ferroptotic H9c2 cardiomyocytes and cortical/hippocampal neurons after traumatic brain injury. Application of this protocol affords visualization of physiologically relevant levels of very low abundance (20 pmol µmol-1 lipid) peroxidized lipids in subcellular compartments and their accumulation in disease conditions.


Asunto(s)
Ferroptosis/fisiología , Peroxidación de Lípido/fisiología , Fosfatidiletanolaminas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Carbolinas/farmacología , Línea Celular , Ferroptosis/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Sprague-Dawley , Espectrometría de Masa de Ion Secundario/métodos
4.
Angew Chem Int Ed Engl ; 58(10): 3156-3161, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30680861

RESUMEN

Millions of diverse molecules constituting the lipidome act as important signals within cells. Of these, cardiolipin (CL) and phosphatidylethanolamine (PE) participate in apoptosis and ferroptosis, respectively. Their subcellular distribution is largely unknown. Imaging mass spectrometry is capable of deciphering the spatial distribution of multiple lipids at subcellular levels. Here we report the development of a unique 70 keV gas-cluster ion beam that consists of (CO2 )n+ (n>10 000) projectiles. Coupled with direct current beam buncher-time-of-flight secondary-ion mass spectrometry, it is optimized for sensitivity towards high-mass species (up to m/z 3000) at high spatial resolution (1 µm). In combination with immunohistochemistry, phospholipids, including PE and CL, have been assessed in subcellular compartments of mouse hippocampal neuronal cells and rat brain tissue.


Asunto(s)
Química Encefálica , Cardiolipinas/análisis , Fosfatidiletanolaminas/análisis , Animales , Línea Celular , Hipocampo/química , Hipocampo/citología , Ratones , Neuronas/química , Ratas , Espectrometría de Masa de Ion Secundario/métodos
5.
Anal Chem ; 89(8): 4611-4619, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28306235

RESUMEN

Gas cluster ion beam-secondary ion mass spectrometry (GCIB-SIMS) has shown the full potential of mapping intact lipids in biological systems with better than 10 µm lateral resolution. This study investigated further the capability of GCIB-SIMS in imaging high-mass signals from intact cardiolipin (CL) and gangliosides in normal brain and the effect of a controlled cortical impact model (CCI) of traumatic brain injury (TBI) on their distribution. A combination of enzymatic and chemical treatments was employed to suppress the signals from the most abundant phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)) and enhance the signals from the low-abundance CLs and gangliosides to allow their GCIB-SIMS detection at 8 and 16 µm spatial resolution. Brain CLs have not been observed previously using other contemporary imaging mass spectrometry techniques at better than 50 µm spatial resolution. High-resolution images of naive and injured brain tissue facilitated the comparison of CL species across three multicell layers in the CA1, CA3, and DG regions of the hippocampus. GCIB-SIMS also reliably mapped losses of oxidizable polyunsaturated CL species (but not the oxidation-resistant saturated and monounsaturated gangliosides) to regions including the CA1 and CA3 of the hippocampus after CCI. This work extends the detection range for SIMS measurements of intact lipids to above m/z 2000, bridging the mass range gap compared with MALDI. Further advances in high-resolution SIMS of CLs, with the potential for single cell or supra-cellular imaging, will be essential for the understanding of CL's functional and structural organization in normal and injured brain.


Asunto(s)
Encéfalo/metabolismo , Cardiolipinas/metabolismo , Láseres de Gas , Espectrometría de Masa de Ion Secundario/métodos , Animales , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/veterinaria , Imidas/química , Masculino , Propilaminas/química , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Fosfolipasas de Tipo C/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-27498292

RESUMEN

Since its discovery 75years ago, a wealth of knowledge has accumulated on the role of cardiolipin, the hallmark phospholipid of mitochondria, in bioenergetics and particularly on the structural organization of the inner mitochondrial membrane. A surge of interest in this anionic doubly-charged tetra-acylated lipid found in both prokaryotes and mitochondria has emerged based on its newly discovered signaling functions. Cardiolipin displays organ, tissue, cellular and transmembrane distribution asymmetries. A collapse of the membrane asymmetry represents a pro-mitophageal mechanism whereby externalized cardiolipin acts as an "eat-me" signal. Oxidation of cardiolipin's polyunsaturated acyl chains - catalyzed by cardiolipin complexes with cytochrome c. - is a pro-apoptotic signal. The messaging functions of myriads of cardiolipin species and their oxidation products are now being recognized as important intracellular and extracellular signals for innate and adaptive immune systems. This newly developing field of research exploring cardiolipin signaling is the main subject of this review. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.


Asunto(s)
Cardiolipinas/metabolismo , Transducción de Señal/fisiología , Animales , Citocromos c/metabolismo , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Fosfolípidos/metabolismo
7.
J Neurosci ; 35(34): 12002-17, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26311780

RESUMEN

Lamin B1 is a component of the nuclear lamina and plays a critical role in maintaining nuclear architecture, regulating gene expression and modulating chromatin positioning. We have previously shown that LMNB1 gene duplications cause autosomal dominant leukodystrophy (ADLD), a fatal adult onset demyelinating disease. The mechanisms by which increased LMNB1 levels cause ADLD are unclear. To address this, we used a transgenic mouse model where Lamin B1 overexpression is targeted to oligodendrocytes. These mice showed severe vacuolar degeneration of the spinal cord white matter together with marked astrogliosis, microglial infiltration, and secondary axonal damage. Oligodendrocytes in the transgenic mice revealed alterations in histone modifications favoring a transcriptionally repressed state. Chromatin changes were accompanied by reduced expression of genes involved in lipid synthesis pathways, many of which are known to play important roles in myelin regulation and are preferentially expressed in oligodendrocytes. Decreased lipogenic gene expression resulted in a significant reduction in multiple classes of lipids involved in myelin formation. Many of these gene expression changes and lipid alterations were observed even before the onset of the phenotype, suggesting a causal role. Our findings establish, for the first time, a link between LMNB1 and lipid synthesis in oligodendrocytes, and provide a mechanistic framework to explain the age dependence and white matter involvement of the disease phenotype. These results have implications for disease pathogenesis and may also shed light on the regulation of lipid synthesis pathways in myelin maintenance and turnover. SIGNIFICANCE STATEMENT: Autosomal dominant leukodystrophy (ADLD) is fatal neurological disorder caused by increased levels of the nuclear protein, Lamin B1. The disease is characterized by an age-dependent loss of myelin, the fatty sheath that covers nerve fibers. We have studied a mouse model where Lamin B1 level are increased in oligodendrocytes, the cell type that produces myelin in the CNS. We demonstrate that destruction of myelin in the spinal cord is responsible for the degenerative phenotype in our mouse model. We show that this degeneration is mediated by reduced expression of lipid synthesis genes and the subsequent reduction in myelin enriched lipids. These findings provide a mechanistic framework to explain the age dependence and tissue specificity of the ADLD disease phenotype.


Asunto(s)
Envejecimiento/metabolismo , Enfermedades Desmielinizantes/metabolismo , Lamina Tipo B/biosíntesis , Metabolismo de los Lípidos/fisiología , Envejecimiento/genética , Animales , Enfermedades Desmielinizantes/genética , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Lámina Nuclear/genética , Lámina Nuclear/metabolismo , Oligodendroglía/metabolismo
8.
J Neurochem ; 139(4): 659-675, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27591733

RESUMEN

Traumatic brain injury (TBI) leads to changes in ion fluxes, alterations in mitochondrial function, and increased generation of reactive oxygen species, resulting in secondary tissue damage. Mitochondria play important signaling roles in coordination of multiple metabolic platforms in addition to their well-known role in bioenergetics. Mitochondrial signaling strongly depends on cardiolipin (CL), a mitochondria-specific structurally unusual anionic phospholipid containing four fatty acyl chains. While our previous reports indicated that CL is selectively oxidized and presents itself as a target for the redox therapy following TBI, the topography of changes of CL in the injured brain remained to be defined. Here, we present a matrix-assisted laser desorption/ionization imaging study which reports regio-specific changes in CL, in a controlled cortical impact model of TBI in rats. Matrix-assisted laser desorption/ionization imaging revealed that TBI caused early decreases in CL in the contusional cortex, ipsilateral hippocampus, and thalamus with the most highly unsaturated CL species being most susceptible to loss. Phosphatidylinositol was the only other lipid species that exhibited a significant decrease, albeit to a lesser extent than CL. Signals for other lipids remained unchanged. This is the first study evaluating the spatial distribution of CL loss after acute brain injury. We propose that the CL loss may constitute an upstream mechanism for CL-driven signaling in different brain regions as an early response mechanism and may also underlie the bioenergetic changes that occur in hippocampal, cortical, and thalamic mitochondria after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Cardiolipinas , Corteza Cerebral/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tálamo/diagnóstico por imagen , Animales , Contusión Encefálica/diagnóstico por imagen , Contusión Encefálica/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Cardiolipinas/metabolismo , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Tálamo/metabolismo
9.
Biochim Biophys Acta ; 1818(10): 2413-23, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22464971

RESUMEN

Oxidized phospholipid species are important, biologically relevant, lipid signaling molecules that usually exist in low abundance in biological tissues. Along with their inherent stability issues, these oxidized lipids present themselves as a challenge in their detection and identification. Often times, oxidized lipid species can co-chromatograph with non-oxidized species making the detection of the former extremely difficult, even with the use of mass spectrometry. In this study, a normal-phase and reverse-phase two dimensional high performance liquid chromatography (HPLC)-mass spectrometric system was applied to separate oxidized phospholipids from their non-oxidized counterparts, allowing unambiguous detection in a total lipid extract. We have utilized bovine heart cardiolipin as well as commercially available tetralinoleoyl cardiolipin oxidized with cytochrome c (cyt c) and hydrogen peroxide as well as with lipoxygenase to test the separation power of the system. Our findings indicate that oxidized species of not only cardiolipin, but other phospholipid species, can be effectively separated from their non-oxidized counterparts in this two dimensional system. We utilized three types of biological tissues and oxidative insults, namely rotenone treatment of lymphocytes to induce mitochondrial damage and cell death, pulmonary inhalation exposure to single walled carbon nanotubes, as well as total body irradiation, in order to identify cardiolipin oxidation products, critical to the cell damage/cell death pathways in these tissues following cellular stress/injury. Our results indicate that selective cardiolipin (CL) oxidation is a result of a non-random free radical process. In addition, we assessed the ability of the system to identify CL oxidation products in the brain, a tissue known for its extreme complexity and diversity of CL species. The ability of the two dimensional HPLC-mass spectrometric system to detect and characterize oxidized lipid products will allow new studies to be formulated to probe the answers to biologically important questions with regard to oxidative lipidomics and cellular insult. This article is part of a Special Issue entitled: Oxidized phospholipids - their properties and interactions with proteins.


Asunto(s)
Biomarcadores/metabolismo , Cardiolipinas/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/patología , Pulmón/metabolismo , Pulmón/patología , Linfocitos/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cardiolipinas/química , Bovinos , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de la radiación , Humanos , Exposición por Inhalación , Pulmón/efectos de los fármacos , Linfocitos/efectos de los fármacos , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nanotubos de Carbono/efectos adversos , Oxidación-Reducción/efectos de los fármacos , Ratas , Rotenona/farmacología , Factores de Tiempo , Irradiación Corporal Total
10.
J Neurochem ; 115(6): 1322-36, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20950335

RESUMEN

Lipids, particularly phospholipids, are fundamental to CNS tissue architecture and function. Endogenous polyunsaturated fatty acid chains of phospholipids possess cis-double bonds each separated by one methylene group. These phospholipids are very susceptible to free-radical attack and oxidative modifications. A combination of analytical methods including different versions of chromatography and mass spectrometry allows detailed information to be obtained on the content and distribution of lipids and their oxidation products thus constituting the newly emerging field of oxidative lipidomics. It is becoming evident that specific oxidative modifications of lipids are critical to a number of cellular functions, disease states and responses to oxidative stresses. Oxidative lipidomics is beginning to provide new mechanistic insights into traumatic brain injury which may have significant translational potential for development of therapies in acute CNS insults. In particular, selective oxidation of a mitochondria-specific phospholipid, cardiolipin, has been associated with the initiation and progression of apoptosis in injured neurons thus indicating new drug discovery targets. Furthermore, imaging mass-spectrometry represents an exciting new opportunity for correlating maps of lipid profiles and their oxidation products with structure and neuropathology. This review is focused on these most recent advancements in the field of lipidomics and oxidative lipidomics based on the applications of mass spectrometry and imaging mass spectrometry as they relate to studies of phospholipids in traumatic brain injury.


Asunto(s)
Lesiones Encefálicas/metabolismo , Metabolismo de los Lípidos/fisiología , Estrés Oxidativo/fisiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Lesiones Encefálicas/diagnóstico , Humanos , Lípidos/química , Espectrometría de Masas/métodos , Oxidación-Reducción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
11.
J Transl Med ; 7: 17, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19292913

RESUMEN

The Receptor for Advanced Glycation Endproducts [RAGE] is an evolutionarily recent member of the immunoglobulin super-family, encoded in the Class III region of the major histocompatability complex. RAGE is highly expressed only in the lung at readily measurable levels but increases quickly at sites of inflammation, largely on inflammatory and epithelial cells. It is found either as a membrane-bound or soluble protein that is markedly upregulated by stress in epithelial cells, thereby regulating their metabolism and enhancing their central barrier functionality. Activation and upregulation of RAGE by its ligands leads to enhanced survival. Perpetual signaling through RAGE-induced survival pathways in the setting of limited nutrients or oxygenation results in enhanced autophagy, diminished apoptosis, and (with ATP depletion) necrosis. This results in chronic inflammation and in many instances is the setting in which epithelial malignancies arise. RAGE and its isoforms sit in a pivotal role, regulating metabolism, inflammation, and epithelial survival in the setting of stress. Understanding the molecular structure and function of it and its ligands in the setting of inflammation is critically important in understanding the role of this receptor in tumor biology.


Asunto(s)
Inflamación/metabolismo , Neoplasias/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Ligandos , Receptor para Productos Finales de Glicación Avanzada , Proteínas S100/metabolismo
12.
Chem Phys Lipids ; 221: 93-107, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30928338

RESUMEN

Aerobic life is based on numerous metabolic oxidation reactions as well as biosynthesis of oxygenated signaling compounds. Among the latter are the myriads of oxygenated lipids including a well-studied group of polyunsaturated fatty acids (PUFA) - octadecanoids, eicosanoids, and docosanoids. During the last two decades, remarkable progress in liquid-chromatography-mass spectrometry has led to significant progress in the characterization of oxygenated PUFA-containing phospholipids, thus designating the emergence of a new field of lipidomics, redox lipidomics. Although non-enzymatic free radical reactions of lipid peroxidation have been mostly associated with the aberrant metabolism typical of acute injury or chronic degenerative processes, newly accumulated evidence suggests that enzymatically catalyzed (phospho)lipid oxygenation reactions are essential mechanisms of many physiological pathways. In this review, we discuss a variety of contemporary protocols applicable for identification and quantitative characterization of different classes of peroxidized (phospho)lipids. We describe applications of different types of LCMS for analysis of peroxidized (phospho)lipids, particularly cardiolipins and phosphatidylethanolalmines, in two important types of programmed cell death - apoptosis and ferroptosis. We discuss the role of peroxidized phosphatidylserines in phagocytotic signaling. We exemplify the participation of peroxidized neutral lipids, particularly tri-acylglycerides, in immuno-suppressive signaling in cancer. We also consider new approaches to exploring the spatial distribution of phospholipids in the context of their oxidizability by MS imaging, including the latest achievements in high resolution imaging techniques. We present innovative approaches to the interpretation of LC-MS data, including audio-representation analysis. Overall, we emphasize the role of redox lipidomics as a communication language, unprecedented in diversity and richness, through the analysis of peroxidized (phospho)lipids.


Asunto(s)
Lipidómica , Fosfolípidos/química , Cromatografía Liquida , Humanos , Espectrometría de Masas , Oxidación-Reducción
13.
PLoS One ; 9(3): e88259, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24642901

RESUMEN

Elucidating the sites and mechanisms of sRAGE action in the healthy state is vital to better understand the biological importance of the receptor for advanced glycation end products (RAGE). Previous studies in animal models of disease have demonstrated that exogenous sRAGE has an anti-inflammatory effect, which has been reasoned to arise from sequestration of pro-inflammatory ligands away from membrane-bound RAGE isoforms. We show here that sRAGE exhibits in vitro binding with high affinity and reversibly to extracellular matrix components collagen I, collagen IV, and laminin. Soluble RAGE administered intratracheally, intravenously, or intraperitoneally, does not distribute in a specific fashion to any healthy mouse tissue, suggesting against the existence of accessible sRAGE sinks and receptors in the healthy mouse. Intratracheal administration is the only effective means of delivering exogenous sRAGE to the lung, the organ in which RAGE is most highly expressed; clearance of sRAGE from lung does not differ appreciably from that of albumin.


Asunto(s)
Colágeno Tipo IV/metabolismo , Colágeno Tipo I/metabolismo , Laminina/metabolismo , Receptores Inmunológicos/metabolismo , Administración por Inhalación , Animales , Disponibilidad Biológica , Fibronectinas/metabolismo , Humanos , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Cinética , Pulmón/química , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/administración & dosificación , Receptores Inmunológicos/aislamiento & purificación , Solubilidad
14.
Chem Phys Lipids ; 165(5): 545-62, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22692104

RESUMEN

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has emerged as a novel powerful MS methodology that has the ability to generate both molecular and spatial information within a tissue section. Application of this technology as a new type of biochemical lipid microscopy may lead to new discoveries of the lipid metabolism and biomarkers associated with area-specific alterations or damage under stress/disease conditions such as traumatic brain injury or acute lung injury, among others. However there are limitations in the range of what it can detect as compared with liquid chromatography-MS (LC-MS) of a lipid extract from a tissue section. The goal of the current work was to critically consider remarkable new opportunities along with the limitations and approaches for further improvements of MALDI-MSI. Based on our experimental data and assessments, improvements of the spectral and spatial resolution, sensitivity and specificity towards low abundance species of lipids are proposed. This is followed by a review of the current literature, including methodologies that other laboratories have used to overcome these challenges.


Asunto(s)
Imagen Molecular/métodos , Fosfolípidos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Suplementos Dietéticos , Ácidos Docosahexaenoicos/farmacología
15.
Nat Neurosci ; 15(10): 1407-13, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22922784

RESUMEN

The brain contains a highly diversified complement of molecular species of a mitochondria-specific phospholipid, cardiolipin, which, because of its polyunsaturation, can readily undergo oxygenation. Using global lipidomics analysis in experimental traumatic brain injury (TBI), we found that TBI was accompanied by oxidative consumption of polyunsaturated cardiolipin and the accumulation of more than 150 new oxygenated molecular species of cardiolipin. RNAi-based manipulations of cardiolipin synthase and cardiolipin levels conferred resistance to mechanical stretch, an in vitro model of traumatic neuronal injury, in primary rat cortical neurons. By applying a brain-permeable mitochondria-targeted electron scavenger, we prevented cardiolipin oxidation in the brain, achieved a substantial reduction in neuronal death both in vitro and in vivo, and markedly reduced behavioral deficits and cortical lesion volume. We conclude that cardiolipin oxygenation generates neuronal death signals and that prevention of it by mitochondria-targeted small molecule inhibitors represents a new target for neuro-drug discovery.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Cardiolipinas/fisiología , Muerte Celular/fisiología , Óxidos N-Cíclicos/uso terapéutico , Peroxidación de Lípido/fisiología , Animales , Conducta Animal/efectos de los fármacos , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Cardiolipinas/metabolismo , Muerte Celular/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Óxidos N-Cíclicos/farmacología , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Peroxidación de Lípido/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Oxidación-Reducción , Cultivo Primario de Células , Ratas , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
16.
ACS Nano ; 6(5): 4147-56, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22463369

RESUMEN

The pulmonary route represents one of the most important portals of entry for nanoparticles into the body. However, the in vivo interactions of nanoparticles with biomolecules of the lung have not been sufficiently studied. Here, using an established mouse model of pharyngeal aspiration of single-walled carbon nanotubes (SWCNTs), we recovered SWCNTs from the bronchoalveolar lavage fluid (BALf), purified them from possible contamination with lung cells, and examined the composition of phospholipids adsorbed on SWCNTs by liquid chromatography mass spectrometry (LC-MS) analysis. We found that SWCNTs selectively adsorbed two types of the most abundant surfactant phospholipids: phosphatidylcholines (PC) and phosphatidylglycerols (PG). Molecular speciation of these phospholipids was also consistent with pulmonary surfactant. Quantitation of adsorbed lipids by LC-MS along with the structural assessments of phospholipid binding by atomic force microscopy and molecular modeling indicated that the phospholipids (∼108 molecules per SWCNT) formed an uninterrupted "coating" whereby the hydrophobic alkyl chains of the phospholipids were adsorbed onto the SWCNT with the polar head groups pointed away from the SWCNT into the aqueous phase. In addition, the presence of surfactant proteins A, B, and D on SWCNTs was determined by LC-MS. Finally, we demonstrated that the presence of this surfactant coating markedly enhanced the in vitro uptake of SWCNTs by macrophages. Taken together, this is the first demonstration of the in vivo adsorption of the surfactant lipids and proteins on SWCNTs in a physiologically relevant animal model.


Asunto(s)
Lípidos/química , Pulmón/metabolismo , Nanotubos de Carbono , Faringe/metabolismo , Tensoactivos/química , Adsorción , Animales , Ratones , Aspiración Respiratoria
17.
ACS Nano ; 5(9): 7342-53, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21800898

RESUMEN

It is commonly believed that nanomaterials cause nonspecific oxidative damage. Our mass spectrometry-based oxidative lipidomics analysis of all major phospholipid classes revealed highly selective patterns of pulmonary peroxidation after inhalation exposure of mice to single-walled carbon nanotubes. No oxidized molecular species were found in the two most abundant phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Peroxidation products were identified in three relatively minor classes of anionic phospholipids, cardiolipin, phosphatidylserine, and phosphatidylinositol, whereby oxygenation of polyunsaturated fatty acid residues also showed unusual substrate specificity. This nonrandom peroxidation coincided with the accumulation of apoptotic cells in the lung. A similar selective phospholipid peroxidation profile was detected upon incubation of a mixture of total lung lipids with H(2)O(2)/cytochrome c known to catalyze cardiolipin and phosphatidylserine peroxidation in apoptotic cells. The characterized specific phospholipid peroxidation signaling pathways indicate new approaches to the development of mitochondria-targeted regulators of cardiolipin peroxidation to protect against deleterious effects of pro-apoptotic effects of single-walled carbon nanotubes in the lung.


Asunto(s)
Peroxidación de Lípido , Lípidos/química , Pulmón/metabolismo , Nanotubos de Carbono , Fosfoproteínas/química , Proteómica , Animales , Líquido del Lavado Bronquioalveolar , Ratones , Ratones Endogámicos C57BL
18.
J Biol Chem ; 284(23): 15951-69, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19351880

RESUMEN

Damage of presynaptic mitochondria could result in release of proapoptotic factors that threaten the integrity of the entire neuron. We discovered that alpha-synuclein (Syn) forms a triple complex with anionic lipids (such as cardiolipin) and cytochrome c, which exerts a peroxidase activity. The latter catalyzes covalent hetero-oligomerization of Syn with cytochrome c into high molecular weight aggregates. Syn is a preferred substrate of this reaction and is oxidized more readily than cardiolipin, dopamine, and other phenolic substrates. Co-localization of Syn with cytochrome c was detected in aggregates formed upon proapoptotic stimulation of SH-SY5Y and HeLa cells and in dopaminergic substantia nigra neurons of rotenone-treated rats. Syn-cardiolipin exerted protection against cytochrome c-induced caspase-3 activation in a cell-free system, particularly in the presence of H(2)O(2). Direct delivery of Syn into mouse embryonic cells conferred resistance to proapoptotic caspase-3 activation. Conversely, small interfering RNA depletion of Syn in HeLa cells made them more sensitive to dopamine-induced apoptosis. In human Parkinson disease substantia nigra neurons, two-thirds of co-localized Syn-cytochrome c complexes occurred in Lewy neurites. Taken together, these results indicate that Syn may prevent execution of apoptosis in neurons through covalent hetero-oligomerization of cytochrome c. This immediate protective function of Syn is associated with the formation of the peroxidase complex representing a source of oxidative stress and postponed damage.


Asunto(s)
Citocromos c/metabolismo , Enfermedad de Parkinson/fisiopatología , Peroxidasas/metabolismo , Sinucleínas/metabolismo , Animales , Apoptosis , Cardiolipinas/fisiología , Línea Celular Tumoral , Clonación Molecular , Reactivos de Enlaces Cruzados , Células HeLa/fisiología , Humanos , Lípidos/fisiología , Ratones , Neuroblastoma , Neuronas/fisiología , Estrés Oxidativo , Enfermedad de Parkinson/enzimología , ARN Interferente Pequeño/genética , Sinucleínas/genética
19.
Cancer Res ; 68(19): 8076-84, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18829566

RESUMEN

Bone marrow-derived dendritic cells engineered using recombinant adenovirus to secrete high levels of IL-12p70 dramatically inhibited the growth of established CMS4 sarcomas in BALB/c mice after intratumoral administration. An analysis of splenic CD8(+) T cells in regressor mice revealed a strong, complex reactivity pattern against high-performance liquid chromatography (HPLC)-resolved peptides isolated by acid elution from single-cell suspensions of surgically resected CMS4 lesions. Mass spectrometry analyses defined two major overlapping peptide species that derive from the murine hemoglobin-beta (HBB) protein within the most stimulatory HPLC fractions. Although cultured CMS4 tumor cells failed to express HBB mRNA based on reverse transcription-PCR analyses, prophylactic vaccination of BALB/c mice with vaccines containing HBB peptides promoted specific CD8(+) T-cell responses that protected mice against a subsequent challenge with CMS4 or unrelated syngeneic (HBB(neg)) tumors of divergent histology (sarcoma, carcinomas of the breast or colon). In situ imaging suggested that vaccines limit or destabilize tumor-associated vascular structures, potentially by promoting immunity against HBB+ vascular pericytes. Importantly, there were no untoward effects of vaccination with the HBB peptide on peripheral RBC numbers, RBC hemoglobin content, or vascular structures in the brain or eye.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Hemoglobinas/inmunología , Inmunidad Celular/fisiología , Neoplasias/terapia , Animales , Linfocitos T CD8-positivos/fisiología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Células Dendríticas/inmunología , Células Dendríticas/trasplante , Femenino , Hemoglobinas/antagonistas & inhibidores , Inmunoterapia Adoptiva/métodos , Ratones , Ratones Endogámicos BALB C , Neoplasias/inmunología , Neoplasias/patología , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/uso terapéutico , Trasplante Isogénico/inmunología , Carga Tumoral/inmunología , Células Tumorales Cultivadas
20.
Anal Biochem ; 370(2): 162-70, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17869211

RESUMEN

The accumulation and aggregation of fragments of amyloid precursor protein (APP) are central to the development of Alzheimer's disease. The production of the small fragment C99 is thought to form the rate-limiting step in the APP processing pathway, which can lead to the production of the toxic Abeta peptide. It has also been suggested that the proteasome contributes to APP catabolism. While the identities and aggregation propensities of many APP fragments have been studied in vitro, the sequences, structures, and cellular sources of fragments generated in vivo remains poorly elucidated. To better identify the specific APP fragments generated in vivo and to elucidate the role of the proteasome in APP processing, we developed a C99 yeast expression system. Using Zip Tip immunocapture, a specific anti-Abeta antiserum (6E10), and matrix-assisted laser desorption ionization- time of flight mass spectrometry, we identified over one dozen APP-generated peptide fragments in wild-type yeast (PRE1PRE2) and over three dozen unique fragments in proteasome mutant cells (pre1- 1pre2-1) expressing C99. Based on the identities of the immunocaptured species, we propose that defects in proteasome function are compensated by other proteases and that the combination of techniques described here will be invaluable to further delineate the APP processing pathway in vivo.


Asunto(s)
Precursor de Proteína beta-Amiloide/química , Fragmentos de Péptidos/química , Proteoma , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Secuencia de Bases , Cartilla de ADN , Estabilidad de Medicamentos , Espectrometría de Masas , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA