Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 31(12): 4535-43, 2011 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-21430154

RESUMEN

Sensory hair cells of the inner ear are the mechanoelectric transducers of sound and head motion. In mammals, damage to sensory hair cells leads to hearing or balance deficits. Nonmammalian vertebrates such as birds can regenerate hair cells after injury. In a previous study, we characterized transcription factor gene expression during chicken hair cell regeneration. In those studies, a laser microbeam or ototoxic antibiotics were used to damage the sensory epithelia (SE). The current study focused on 27 genes that were upregulated in regenerating SEs compared to untreated SEs in the previous study. Those genes were knocked down by siRNA to determine their requirement for supporting cell proliferation and to measure resulting changes in the larger network of gene expression. We identified 11 genes necessary for proliferation and also identified novel interactive relationships between many of them. Defined components of the WNT, PAX, and AP1 pathways were shown to be required for supporting cell proliferation. These pathways intersect on WNT4, which is also necessary for proliferation. Among the required genes, the CCAAT enhancer binding protein, CEBPG, acts downstream of Jun Kinase and JUND in the AP1 pathway. The WNT coreceptor LRP5 acts downstream of CEBPG, as does the transcription factor BTAF1. Both of these genes are also necessary for supporting cell proliferation. This is the first large-scale screen of its type and suggests an important intersection between the AP1 pathway, the PAX pathway, and WNT signaling in the regulation of supporting cell proliferation during inner ear hair cell regeneration.


Asunto(s)
Oído Interno/fisiología , Células Ciliadas Auditivas Internas/fisiología , Regeneración Nerviosa/fisiología , Interferencia de ARN/fisiología , Factores de Transcripción/genética , Animales , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/fisiología , Proliferación Celular , Pollos , Epitelio/fisiología , Técnicas de Silenciamiento del Gen , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Rayos Láser , Análisis por Micromatrices , Paxillin/genética , Paxillin/fisiología , Sáculo y Utrículo/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/fisiología , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/fisiología , Proteínas Wnt/genética , Proteínas Wnt/farmacología , Proteínas Wnt/fisiología , Proteína Wnt4
2.
Mol Cell Neurosci ; 46(3): 655-61, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21236346

RESUMEN

Otopetrin 1 (Otop1) encodes a protein that is essential for the development of otoconia. Otoconia are the extracellular calcium carbonate containing crystals that are important for vestibular mechanosensory transduction of linear motion and gravity. There are two mutant alleles of Otop1 in mice, titled (tlt) and mergulhador (mlh), which result in non-syndromic otoconia agenesis and a consequent balance defect. Biochemically, Otop1 has been shown to modulate purinergic control of intracellular calcium in vestibular supporting cells, which could be one of the mechanisms by which Otop1 participates in the mineralization of otoconia. To understand how tlt and mlh mutations affect the biochemical function of Otop1, we examined the purinergic response of COS7 cells expressing mutant Otop1 proteins, and dissociated sensory epithelial cells from tlt and mlh mice. We also examined the subcellular localization of Otop1 in whole sensory epithelia from tlt and mlh mice. Here we show that tlt and mlh mutations uncouple Otop1 from inhibition of P2Y receptor function. Although the in vitro biochemical function of the Otop1 mutant proteins is normal, in vivo they behave as null alleles. We show that in supporting cells the apical membrane localization of the mutant Otop1 proteins is lost. These data suggest that the tlt and mlh mutations primarily affect the localization of Otop1, which interferes with its ability to interact with other proteins that are important for its cellular and biochemical function.


Asunto(s)
Proteínas de la Membrana/genética , Mutación Missense , Receptores Purinérgicos P2Y/metabolismo , Transducción de Señal/fisiología , Vestíbulo del Laberinto/citología , Adenosina Trifosfato/metabolismo , Animales , Células COS , Calcio/metabolismo , Células Cultivadas , Chlorocebus aethiops , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Membrana Otolítica/química , Membrana Otolítica/fisiología , Fracciones Subcelulares/metabolismo
3.
J Neurophysiol ; 104(6): 3439-50, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20554841

RESUMEN

Otopetrin 1 (OTOP1) is a multitransmembrane domain protein, which is essential for mineralization of otoconia, the calcium carbonate biominerals required for vestibular function, and the normal sensation of gravity. The mechanism driving mineralization of otoconia is poorly understood, but it has been proposed that supporting cells and a mechanism to maintain high concentrations of calcium are critical. Using Otop1 knockout mice and a utricular epithelial organ culture system, we show that OTOP1 is expressed at the apex of supporting cells and functions to increase cytosolic calcium in response to purinergic agonists, such as adenosine 5'-triphosphate (ATP). This is achieved by blocking mobilization of calcium from intracellular stores in an extracellular calcium-dependent manner and by mediating influx of extracellular calcium. These data support a model in which OTOP1 acts as a sensor of the extracellular calcium concentration near supporting cells and responds to ATP in the endolymph to increase intracellular calcium levels during otoconia mineralization.


Asunto(s)
Carbonato de Calcio/metabolismo , Señalización del Calcio/fisiología , Células Epiteliales/metabolismo , Proteínas de la Membrana/fisiología , Membrana Otolítica/metabolismo , Vestíbulo del Laberinto/citología , Adenosina Trifosfato/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Cristalización , Femenino , Genes Reporteros , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes Neurológicos , Receptores Purinérgicos P2Y/efectos de los fármacos , Receptores Purinérgicos P2Y/fisiología , Proteínas Recombinantes de Fusión/metabolismo
4.
Dev Dyn ; 238(12): 3093-102, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19924793

RESUMEN

Haploinsufficiency for the transcription factor GATA3 leads to hearing loss in humans. It is expressed throughout the auditory sensory epithelium (SE). In the vestibular organs, GATA3 is limited to the striola reversal zone of the utricle. Stereocilia orientation shifts 180 degrees at this region, which contains morphologically distinct type-I hair cells. The striola is conserved in all amniotes, its function is unknown, and GATA3 is the only known marker of the reversal zone. To identify downstream targets of GATA3 that might point to striolar function, we measured gene expression differences between striolar and extra-striolar SE. These were compared with profiles after GATA3 RNAi and GATA3 over-expression. We identified four genes (BMP2, FKHL18, LMO4, and MBNL2) that consistently varied with GATA3. Two of these (LMO4 and MBNL2) were shown to be direct targets of GATA3 by ChIP. Our results suggest that GATA3 impacts WNT signaling in this region of the sensory macula.


Asunto(s)
Oído Interno/metabolismo , Factor de Transcripción GATA3/fisiología , Regulación de la Expresión Génica , Células Ciliadas Vestibulares/metabolismo , Vestíbulo del Laberinto/metabolismo , Animales , Células Cultivadas , Pollos , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Sáculo y Utrículo/metabolismo , Transfección , Vestíbulo del Laberinto/crecimiento & desarrollo , Proteínas Wnt/genética , Proteínas Wnt/fisiología
5.
J Comp Neurol ; 500(4): 646-57, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17154269

RESUMEN

Sensory receptors in the vestibular organs of birds can regenerate after ototoxic injury. Notably, this regenerative process leads to the restoration of the correct patterning of hair cell phenotype and afferent innervation within the repaired sensory epithelium. The molecular signals that specify cell phenotype and regulate neuronal guidance during sensory regeneration are not known, but they are likely to be similar to the signals that direct these processes during embryonic development. The present study examined the recovery of hair cell phenotype during regeneration in the avian utricle, a vestibular organ that detects linear acceleration and head orientation. First, we show that Type I hair cells in the avian vestibular maculae are immunoreactive for the extracellular matrix molecule tenascin and that treatment with the ototoxic antibiotic streptomycin results in a nearly complete elimination of tenascin immunoreactivity. Cells that express tenascin begin to recover after about 2 weeks and are then contacted by calyx terminals of vestibular neurons. In addition, our previous work had shown that the zinc finger transcription factor GATA3 is uniquely expressed within the striolar reversal zone of the utricle (Hawkins et al. [2003] Hum Mol Genet 12:1261-1272), and we show here that this regionalized expression of GATA3 is maintained after severe hair cell lesions and after transplantation of the sensory epithelium onto a chemically defined substrate. In contrast, the expression of three other supporting cell markers--alpha- and beta-tectorin and SCA--is reduced following ototoxic injury. These observations suggest that GATA3 expression may maintain positional information in the maculae during sensory regeneration.


Asunto(s)
Factor de Transcripción GATA3/metabolismo , Células Ciliadas Vestibulares/metabolismo , Regeneración Nerviosa/fisiología , Sáculo y Utrículo/metabolismo , Tenascina/metabolismo , Animales , Antibacterianos , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Pollos , Células Ciliadas Vestibulares/citología , Inmunohistoquímica , Técnicas In Vitro , Degeneración Nerviosa/inducido químicamente , Fenotipo , Sáculo y Utrículo/citología , Estreptomicina , Distribución Tisular
6.
J Assoc Res Otolaryngol ; 10(3): 341-53, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19340485

RESUMEN

The sensory hair cells of the cochlea and vestibular organs are essential for normal hearing and balance function. The mammalian ear possesses a very limited ability to regenerate hair cells and their loss can lead to permanent sensory impairment. In contrast, hair cells in the avian ear are quickly regenerated after acoustic trauma or ototoxic injury. The very different regenerative abilities of the avian vs. mammalian ear can be attributed to differences in injury-evoked expression of genes that either promote or inhibit the production of new hair cells. Gene expression is regulated both by the binding of cis-regulatory molecules to promoter regions as well as through structural modifications of chromatin (e.g., methylation and acetylation). This study examined effects of histone deacetylases (HDACs), whose main function is to modify histone acetylation, on the regulation of regenerative proliferation in the chick utricle. Cultures of regenerating utricles and dissociated cells from the utricular sensory epithelia were treated with the HDAC inhibitors valproic acid, trichostatin A, sodium butyrate, and MS-275. All of these molecules prevent the enzymatic removal of acetyl groups from histones, thus maintaining nuclear chromatin in a "relaxed" (open) configuration. Treatment with all inhibitors resulted in comparable decreases in supporting cell proliferation. We also observed that treatment with the HDAC1-, 2-, and 3-specific inhibitor MS-275 was sufficient to reduce proliferation and that two class I HDACs--HDAC1 and HDAC2--were expressed in the sensory epithelium of the utricle. These results suggest that inhibition of specific type I HDACs is sufficient to prevent cell cycle entry in supporting cells. Notably, treatment with HDAC inhibitors did not affect the differentiation of replacement hair cells. We conclude that histone deacetylation is a positive regulator of regenerative proliferation but is not critical for avian hair cell differentiation.


Asunto(s)
Proliferación Celular , Pollos/fisiología , Epigénesis Genética/fisiología , Histona Desacetilasas/fisiología , Regeneración/fisiología , Sáculo y Utrículo/citología , Sáculo y Utrículo/fisiología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Benzamidas/farmacología , Butiratos/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Epitelio/efectos de los fármacos , Epitelio/fisiología , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos/farmacología , Piridinas/farmacología , Sáculo y Utrículo/efectos de los fármacos , Ácido Valproico/farmacología
7.
PLoS One ; 2(6): e525, 2007 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-17565378

RESUMEN

Loss of inner ear sensory hair cells (HC) is a leading cause of human hearing loss and balance disorders. Unlike mammals, many lower vertebrates can regenerate these cells. We used cross-species microarrays to examine this process in the avian inner ear. Specifically, changes in expression of over 1700 transcription factor (TF) genes were investigated in hair cells of auditory and vestibular organs following treatment with two different damaging agents and regeneration in vitro. Multiple components of seven distinct known signaling pathways were clearly identifiable: TGFbeta, PAX, NOTCH, WNT, NFKappaB, INSULIN/IGF1 and AP1. Numerous components of apoptotic and cell cycle control pathways were differentially expressed, including p27(KIP) and TFs that regulate its expression. A comparison of expression trends across tissues and treatments revealed identical patterns of expression that occurred at identical times during regenerative proliferation. Network analysis of the patterns of gene expression in this large dataset also revealed the additional presence of many components (and possible network interactions) of estrogen receptor signaling, circadian rhythm genes and parts of the polycomb complex (among others). Equal numbers of differentially expressed genes were identified that have not yet been placed into any known pathway. Specific time points and tissues also exhibited interesting differences: For example, 45 zinc finger genes were specifically up-regulated at later stages of cochlear regeneration. These results are the first of their kind and should provide the starting point for more detailed investigations of the role of these many pathways in HC recovery, and for a description of their possible interactions.


Asunto(s)
Biomarcadores/metabolismo , Pollos/genética , Células Epiteliales/fisiología , Perfilación de la Expresión Génica , Células Ciliadas Auditivas Internas/fisiología , Regeneración/fisiología , Animales , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Neurobiol Dis ; 10(1): 33-40, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12079402

RESUMEN

Photoreceptors receive paracrine input from dopaminergic interplexiform cells. Rod photoreceptors in the rd mouse degenerate rapidly due to a specific gene defect. We investigated the effects of dopamine on rd mouse photoreceptors in retinal organ culture. Retinas were harvested from rd or wild-type mice at postnatal day 2 and grown in organ culture for 27 days. When antagonists for either D(1)- or D(2)-family dopamine receptors were added to the media, photoreceptor degeneration was blocked. Furthermore, when dopamine was depleted by the addition of 6-hydroxydopamine and pargyline, photoreceptor survival appeared comparable to wild-type retinal cultures. The addition of a dopamine agonist induced photoreceptor degeneration in dopamine-depleted rd organ cultures. In all cases, photoreceptors maintained robust staining of opsin. These results demonstrate that dopamine antagonists or dopamine depletion blocks photoreceptor degeneration and that dopamine is necessary for photoreceptor degeneration in the rd mouse retinal organ culture model, indicating that dopamine antagonists may represent a therapeutic strategy in retinal degenerative disease.


Asunto(s)
Dopamina/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Animales , Diferenciación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Antagonistas de Dopamina/farmacología , Antagonistas de Dopamina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Técnicas de Cultivo de Órganos , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Receptores Dopaminérgicos/metabolismo , Receptores Dopaminérgicos/fisiología , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/patología , Opsinas de Bastones/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA