Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 167(7): 1734-1749.e22, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984724

RESUMEN

Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity. In human cardiomyocytes, GATA4 broadly co-occupied cardiac enhancers with TBX5, another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment, particularly to cardiac super-enhancers, concomitant with dysregulation of genes related to the phenotypic abnormalities, including cardiac septation. Conversely, the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity, leading to aberrant chromatin states and cellular dysfunction, including those related to morphogenetic defects.


Asunto(s)
Factor de Transcripción GATA4/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Cromatina , Elementos de Facilitación Genéticos , Femenino , Corazón/crecimiento & desarrollo , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Mutación Missense , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Proteínas de Dominio T Box/genética
2.
Development ; 143(5): 810-21, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26932671

RESUMEN

KMT2D, which encodes a histone H3K4 methyltransferase, has been implicated in human congenital heart disease in the context of Kabuki syndrome. However, its role in heart development is not understood. Here, we demonstrate a requirement for KMT2D in cardiac precursors and cardiomyocytes during cardiogenesis in mice. Gene expression analysis revealed downregulation of ion transport and cell cycle genes, leading to altered calcium handling and cell cycle defects. We further determined that myocardial Kmt2d deletion led to decreased H3K4me1 and H3K4me2 at enhancers and promoters. Finally, we identified KMT2D-bound regions in cardiomyocytes, of which a subset was associated with decreased gene expression and decreased H3K4me2 in mutant hearts. This subset included genes related to ion transport, hypoxia-reoxygenation and cell cycle regulation, suggesting that KMT2D is important for these processes. Our findings indicate that KMT2D is essential for regulating cardiac gene expression during heart development primarily via H3K4 di-methylation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Histonas/química , Lisina/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Animales , Aorta/fisiología , Ciclo Celular , Ecocardiografía , Electrofisiología , Elementos de Facilitación Genéticos , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Ventrículos Cardíacos/citología , N-Metiltransferasa de Histona-Lisina , Hipoxia/metabolismo , Metilación , Ratones , Microscopía Fluorescente , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Oxígeno/química , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN
3.
Nature ; 485(7400): 593-8, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-22522929

RESUMEN

The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported previously that cardiac fibroblasts,which represent 50%of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here we use genetic lineage tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became binucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast-activating peptide, thymosin b4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes.


Asunto(s)
Transdiferenciación Celular , Reprogramación Celular , Fibroblastos/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Medicina Regenerativa/métodos , Animales , Biomarcadores/análisis , Linaje de la Célula , Cicatriz/patología , Cicatriz/terapia , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Regulación de la Expresión Génica , Vectores Genéticos/genética , Corazón/fisiología , Corazón/fisiopatología , Factores de Transcripción MEF2 , Masculino , Ratones , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Miocardio/citología , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Timosina/farmacología , Timosina/uso terapéutico
4.
Toxicon ; 53(1): 78-89, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18996139

RESUMEN

Voltage-gated Na(+) channels underlie the action potential upstroke in excitable cells, and both natural and synthetic inactivation inhibitors prolong the Na(+) current (I(Na)). The effects of Na(+) channel mutations on these pharmacological actions are incompletely investigated. Therefore, I compared the effects of inactivation inhibitors on I(Na) in WT or mutant (DeltaKPQ) human cardiac Na(+) channels expressed in HEK-293 cells, by measuring difference currents sensitive to 50muM tetrodotoxin. Veratridine and the pyrethroid tefluthrin prolonged I(Na) in WT and DeltaKPQ without obvious differential effects, while a sea anemone toxin (ATX-II) and a synthetic inotrope (SDZ 201-106) prolonged WT I(Na), but apparently blocked I(Na) in the DeltaKPQ mutant. This block was due, at least in-part, to enhanced steady-state inactivation, with half-inactivation potentials shifted by up to -17mV. Inactivation enhancement by ATX-II also persisted when conditioning depolarizations were abbreviated, and was unaffected by the additional presence of SDZ 201-106 consistent with these agents having unique interactions with DeltaKPQ Na(+) channels. It is concluded that the toxin-binding sites for ATX-II and SDZ 201-106 have allosteric effects converging on a common path affecting steady-state inactivation of DeltaKPQ I(Na). Pharmacological modulation of this path to increase inactivation in mutant Na(+) channels could potentially produce therapeutic benefits.


Asunto(s)
Cardiotónicos/farmacología , Venenos de Cnidarios/farmacología , Activación del Canal Iónico/efectos de los fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Canales de Sodio/genética , Canales de Sodio/metabolismo , Potenciales de Acción , Línea Celular , Ciclopropanos/farmacología , Electrofisiología , Regulación de la Expresión Génica/fisiología , Humanos , Hidrocarburos Fluorados/farmacología , Mutación , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Piperazinas/farmacología , Veratridina/farmacología
5.
Cell Stem Cell ; 18(3): 368-81, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942852

RESUMEN

Stem cell-based approaches to cardiac regeneration are increasingly viable strategies for treating heart failure. Generating abundant and functional autologous cells for transplantation in such a setting, however, remains a significant challenge. Here, we isolated a cell population with extensive proliferation capacity and restricted cardiovascular differentiation potentials during cardiac transdifferentiation of mouse fibroblasts. These induced expandable cardiovascular progenitor cells (ieCPCs) proliferated extensively for more than 18 passages in chemically defined conditions, with 10(5) starting fibroblasts robustly producing 10(16) ieCPCs. ieCPCs expressed cardiac signature genes and readily differentiated into functional cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) in vitro, even after long-term expansion. When transplanted into mouse hearts following myocardial infarction, ieCPCs spontaneously differentiated into CMs, ECs, and SMCs and improved cardiac function for up to 12 weeks after transplantation. Thus, ieCPCs are a powerful system to study cardiovascular specification and provide strategies for regenerative medicine in the heart.


Asunto(s)
Técnicas de Reprogramación Celular , Reprogramación Celular , Fibroblastos , Células Madre Pluripotentes Inducidas , Mioblastos Cardíacos , Infarto del Miocardio , Trasplante de Células Madre , Animales , Fibroblastos/metabolismo , Fibroblastos/trasplante , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/trasplante , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia
6.
Science ; 352(6290): 1216-20, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27127239

RESUMEN

Reprogramming somatic fibroblasts into alternative lineages would provide a promising source of cells for regenerative therapy. However, transdifferentiating human cells into specific homogeneous, functional cell types is challenging. Here we show that cardiomyocyte-like cells can be generated by treating human fibroblasts with a combination of nine compounds that we term 9C. The chemically induced cardiomyocyte-like cells uniformly contracted and resembled human cardiomyocytes in their transcriptome, epigenetic, and electrophysiological properties. 9C treatment of human fibroblasts resulted in a more open-chromatin conformation at key heart developmental genes, enabling their promoters and enhancers to bind effectors of major cardiogenic signals. When transplanted into infarcted mouse hearts, 9C-treated fibroblasts were efficiently converted to chemically induced cardiomyocyte-like cells. This pharmacological approach to lineage-specific reprogramming may have many important therapeutic implications after further optimization to generate mature cardiac cells.


Asunto(s)
Técnicas de Reprogramación Celular , Reprogramación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Miocitos Cardíacos/citología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Transdiferenciación Celular , Cromatina/química , Cromatina/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/citología , Corazón/embriología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Infarto del Miocardio/cirugía , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/trasplante , Cadenas Pesadas de Miosina/genética , Organogénesis/genética , Conformación Proteica , Piel/citología , Bibliotecas de Moléculas Pequeñas/química , Transcriptoma , Transducción Genética
7.
Sci Rep ; 6: 24726, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27095412

RESUMEN

Tissue engineering approaches have the potential to increase the physiologic relevance of human iPS-derived cells, such as cardiomyocytes (iPS-CM). However, forming Engineered Heart Muscle (EHM) typically requires >1 million cells per tissue. Existing miniaturization strategies involve complex approaches not amenable to mass production, limiting the ability to use EHM for iPS-based disease modeling and drug screening. Micro-scale cardiospheres are easily produced, but do not facilitate assembly of elongated muscle or direct force measurements. Here we describe an approach that combines features of EHM and cardiospheres: Micro-Heart Muscle (µHM) arrays, in which elongated muscle fibers are formed in an easily fabricated template, with as few as 2,000 iPS-CM per individual tissue. Within µHM, iPS-CM exhibit uniaxial contractility and alignment, robust sarcomere assembly, and reduced variability and hypersensitivity in drug responsiveness, compared to monolayers with the same cellular composition. µHM mounted onto standard force measurement apparatus exhibited a robust Frank-Starling response to external stretch, and a dose-dependent inotropic response to the ß-adrenergic agonist isoproterenol. Based on the ease of fabrication, the potential for mass production and the small number of cells required to form µHM, this system provides a potentially powerful tool to study cardiomyocyte maturation, disease and cardiotoxicology in vitro.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Humanos , Miocitos Cardíacos/efectos de los fármacos , Sarcómeros , Células del Estroma
8.
Cell Stem Cell ; 18(4): 541-53, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26971820

RESUMEN

Developing technologies for efficient and scalable disruption of gene expression will provide powerful tools for studying gene function, developmental pathways, and disease mechanisms. Here, we develop clustered regularly interspaced short palindromic repeat interference (CRISPRi) to repress gene expression in human induced pluripotent stem cells (iPSCs). CRISPRi, in which a doxycycline-inducible deactivated Cas9 is fused to a KRAB repression domain, can specifically and reversibly inhibit gene expression in iPSCs and iPSC-derived cardiac progenitors, cardiomyocytes, and T lymphocytes. This gene repression system is tunable and has the potential to silence single alleles. Compared with CRISPR nuclease (CRISPRn), CRISPRi gene repression is more efficient and homogenous across cell populations. The CRISPRi system in iPSCs provides a powerful platform to perform genome-scale screens in a wide range of iPSC-derived cell types, dissect developmental pathways, and model disease.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Silenciador del Gen , Células Madre Pluripotentes Inducidas/metabolismo , Humanos
9.
Tissue Eng Part C Methods ; 21(5): 467-79, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25333967

RESUMEN

Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering.


Asunto(s)
Calcio/metabolismo , Células Madre Pluripotentes Inducidas/citología , Microscopía por Video/métodos , Miocitos Cardíacos/citología , Reconocimiento de Normas Patrones Automatizadas , Algoritmos , Diferenciación Celular , Células Cultivadas/citología , Humanos , Procesamiento de Imagen Asistido por Computador , Contracción Miocárdica , Técnicas de Placa-Clamp , Transducción de Señal , Relación Señal-Ruido , Programas Informáticos
10.
Cell Rep ; 6(5): 951-60, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24561253

RESUMEN

It was recently shown that mouse fibroblasts could be reprogrammed into cells of a cardiac fate by forced expression of multiple transcription factors and microRNAs. For ultimate application of such a reprogramming strategy for cell-based therapy or in vivo cardiac regeneration, reducing or eliminating the genetic manipulations by small molecules would be highly desirable. Here, we report the identification of a defined small-molecule cocktail that enables the highly efficient conversion of mouse fibroblasts into cardiac cells with only one transcription factor, Oct4, without any evidence of entrance into the pluripotent state. Small-molecule-induced cardiomyocytes spontaneously contract and exhibit a ventricular phenotype. Furthermore, these induced cardiomyocytes pass through a cardiac progenitor stage. This study lays the foundation for future pharmacological reprogramming approaches and provides a small-molecule condition for investigation of the mechanisms underlying the cardiac reprogramming process.


Asunto(s)
Reprogramación Celular/efectos de los fármacos , Fibroblastos/citología , Miocitos Cardíacos/efectos de los fármacos , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Reprogramación Celular/fisiología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA