Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 95(49): 17957-17961, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084380

RESUMEN

Biotransformation leading to single residue modifications (e.g., deamidation, oxidation) can contribute to decreased efficacy/potency, poor pharmacokinetics, and/or toxicity/immunogenicity for protein therapeutics. Identifying and characterizing such liabilities in vivo are emerging needs for biologics drug discovery. In vitro stress assays involving PBS for deamidation or AAPH for oxidation are commonly used for predicting liabilities in manufacturing and storage and are sometimes considered a predictive tool for in vivo liabilities. However, reports discussing their in vivo translatability are limited. Herein, we introduce a mass spectrometry workflow that characterizes in vivo oxidation and deamidation in pharmacokinetically relevant compartments for diverse protein therapeutic modalities. The workflow has low bias of <10% in quantitating degradation in the relevant pharmacokinetic concentration range for monkey and rabbit serum/plasma (1-100 µg/mL) and allows for high sequence coverage (∼85%) for discovery/monitoring of amino acid modifications. For oxidation and deamidation, the assay was precise, with percent coefficient of variation of <8% at 1-100 µg/mL and ≤6% method-induced artifacts. A high degree of in vitro and in vivo correlation was observed for deamidation on the six diverse protein therapeutics (seven liability sites) tested. In vivo translatability for oxidation liabilities were not observed for the 11 molecules tested using in vitro AAPH stress. One of the molecules dosed in eyes resulted in a false positive and a false negative prediction for in vivo oxidation following AAPH stress. Finally, peroxide stress was also tested but resulted in limited success (1 out of 4 molecules) in predicting oxidation liabilities.


Asunto(s)
Oxidación-Reducción , Animales , Conejos , Biotransformación
2.
Anal Chem ; 95(47): 17263-17272, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37956201

RESUMEN

Intact protein mass spectrometry (MS) coupled with liquid chromatography was applied to characterize the pharmacokinetics and stability profiles of therapeutic proteins. However, limitations from chromatography, including throughput and carryover, result in challenges with handling large sample numbers. Here, we combined intact protein MS with multiple front-end separations, including affinity capture, SampleStream, and high-field asymmetric waveform ion mobility spectrometry (FAIMS), to perform high-throughput and specific mass measurements of a multivalent antibody with one antigen-binding fragment (Fab) fused to an immunoglobulin G1 (IgG1) antibody. Generic affinity capture ensures the retention of both intact species 1Fab-IgG1 and the tentative degradation product IgG1. Subsequently, the analytes were directly loaded into SampleStream, where each injection occurs within ∼30 s. By separating ions prior to MS detection, FAIMS further offered improvement in signal-overnoise by ∼30% for denatured protein MS via employing compensation voltages that were optimized for different antibody species. When enhanced FAIMS transmission of 1Fab-IgG1 was employed, a qualified assay was established for spiked-in serum samples between 0.1 and 25 µg/mL, resulting in ∼10% accuracy bias and precision coefficient of variation. Selective FAIMS transmission of IgG1 as the degradation surrogate product enabled more sensitive detection of clipped species for intact 1Fab-IgG1 at 5 µg/mL in serum, generating an assay to measure 1Fab-IgG1 truncation between 2.5 and 50% with accuracy and precision below 20% bias and coefficient of variation. Our results revealed that the SampleStream-FAIMS-MS platform affords high throughput, selectivity, and sensitivity for characterizing therapeutic antibodies from complex biomatrices qualitatively and quantitatively.


Asunto(s)
Inmunoglobulina G , Espectrometría de Movilidad Iónica , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Cromatografía Liquida , Iones/química
3.
Proc Natl Acad Sci U S A ; 117(18): 9851-9856, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32327606

RESUMEN

Toward the goal of increasing the throughput of high-resolution mass characterization of intact antibodies, we developed a RapidFire-mass spectrometry (MS) assay using electrospray ionization. We achieved unprecedented screening throughput as fast as 15 s/sample, which is an order of magnitude improvement over conventional liquid chromatography (LC)-MS approaches. The screening enabled intact mass determination as accurate as 7 ppm with baseline resolution at the glycoform level for intact antibodies. We utilized this assay to characterize and perform relative quantitation of antibody species from 248 samples of 62 different cell line clones at four time points in 2 h using RapidFire-time-of-flight MS screening. The screening enabled selection of clones with the highest purity of bispecific antibody production and the results significantly correlated with conventional LC-MS results. In addition, analyzing antibodies from a complex plasma sample using affinity-RapidFire-MS was also demonstrated and qualified. In summary, the platform affords high-throughput analyses of antibodies, including bispecific antibodies and potential mispaired side products, in cell culture media, or other complex matrices.


Asunto(s)
Anticuerpos Biespecíficos/sangre , Anticuerpos/sangre , Ensayos Analíticos de Alto Rendimiento/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Anticuerpos/aislamiento & purificación , Anticuerpos Biespecíficos/aislamiento & purificación , Línea Celular , Cromatografía Liquida/métodos , Humanos
4.
J Biol Chem ; 292(9): 3900-3908, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28077575

RESUMEN

The antibody Fc region regulates antibody cytotoxic activities and serum half-life. In a therapeutic context, however, the cytotoxic effector function of an antibody is often not desirable and can create safety liabilities by activating native host immune defenses against cells expressing the receptor antigens. Several amino acid changes in the Fc region have been reported to silence or reduce the effector function of antibodies. These earlier studies focused primarily on the interaction of human antibodies with human Fc-γ receptors, and it remains largely unknown how such changes to Fc might translate to the context of a murine antibody. We demonstrate that the commonly used N297G (NG) and D265A, N297G (DANG) variants that are efficacious in attenuating effector function in primates retain potent complement activation capacity in mice, leading to safety liabilities in murine studies. In contrast, we found an L234A, L235A, P329G (LALA-PG) variant that eliminates complement binding and fixation as well as Fc-γ-dependent, antibody-dependent, cell-mediated cytotoxity in both murine IgG2a and human IgG1. These LALA-PG substitutions allow a more accurate translation of results generated with an "effectorless" antibody between mice and primates. Further, we show that both human and murine antibodies containing the LALA-PG variant have typical pharmacokinetics in rodents and retain thermostability, enabling efficient knobs-into-holes bispecific antibody production and a robust path to generating highly effector-attenuated bispecific antibodies for preclinical studies.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Inmunoglobulina G/química , Animales , Formación de Anticuerpos , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Complemento C1q/inmunología , Cricetinae , Cristalografía por Rayos X , Ensayo de Inmunoadsorción Enzimática , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/genética , Ratones , Conformación Proteica , Receptores de IgG/metabolismo , Temperatura
5.
Mol Pharm ; 15(10): 4529-4537, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118239

RESUMEN

A critical part of the clinical development path for a therapeutic antibody involves evaluating the physical and chemical stability of candidate molecules throughout the manufacturing process. In particular, the risks of chemical liabilities that can impact antigen binding, such as deamidation, oxidation, and isomerization in the antibody CDR sequences, need to be controlled through formulation development or eliminated by replacing the amino acid motif displaying the chemical instability. Commonly, the antibody CDR sequence contains multiple sequence motifs (potential hotspots) for chemical instability. However, only a subset of these motifs results in actual chemical modification, and thus, experimental assessment of the extent of instability is necessary to identify positions for potential sequence engineering. Ideally, this information should be available prior to antibody humanization at the stage of parental rodent antibody identification. Early knowledge of liabilities allows for ranking of clones or the mitigation of liabilities by concurrent engineering with the antibody humanization process instead of time-consuming sequential activities. However, concurrent engineering of chemical liabilities and humanization requires translatability of the chemical modifications from the rodent parental antibody to the humanized. We experimentally compared the stability of all sequence motifs by mass spectrometric peptide mapping between the rodent parental antibody and the final humanized antibody and observed a linear correlation. These results have enabled a streamlined developability assessment process for therapeutic antibodies from lead discovery to clinical development.


Asunto(s)
Anticuerpos/inmunología , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Desaminación , Concentración de Iones de Hidrógeno , Isomerismo , Metionina/química , Ratones , Oxidación-Reducción , Espectrometría de Masas en Tándem , Triptófano/química
6.
Anal Chem ; 88(24): 12122-12127, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28193052

RESUMEN

Bispecific antibodies, including bispecific IgG, show some promise in clinical trials as a means to extend the therapeutic potential of antibodies. Bispecific IgG can be made by separate expression and purification of each parent half antibody followed by in vitro reconstitution. Generating bispecific IgG by coexpression of two different light and heavy chains in a single host cell is potentially more efficient because it obviates the need for two separate cell lines and purification processes. However, this workflow may produce unwanted mispaired IgG species in addition to the desired bispecific IgG. Development and identification of designs that facilitate cognate light chain pairing may benefit from more refined methods to identify and quantify low levels of mispaired IgG. Using an anti-IL-4/IL-13 bispecific IgG, a mass spectrometric characterization method was developed using native or denaturing conditions by direct infusion into an Exactive Plus Extended Mass Range Orbitrap instrument. The high mass resolving power of the instrument allows unambiguous identification and accurate quantification of all light and heavy chain pairing variants in a mixture of bispecific IgG assembled in vivo upon coexpression down to 1% impurity. Preferential pairing of the anti-IL-13 light chain to its cognate heavy chain was observed, which may be leveraged to guide the design of a single-cell solution for streamlined production of bispecific IgG. Additionally, the utility of native mass spectrometry in deconvoluting complex antibody mixtures and in antigen-binding experiments to understand the contribution of doubly light chain mispaired bispecific IgG was demonstrated.


Asunto(s)
Anticuerpos Biespecíficos/análisis , Inmunoglobulina G/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Anticuerpos Biespecíficos/aislamiento & purificación , Anticuerpos Biespecíficos/metabolismo , Cromatografía en Gel , Células HEK293 , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/genética , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/metabolismo , Interleucina-13/inmunología , Interleucina-4/inmunología , Límite de Detección , Desnaturalización Proteica , Ingeniería de Proteínas
7.
J Biol Chem ; 288(37): 26583-93, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23880771

RESUMEN

Human bispecific antibodies have great potential for the treatment of human diseases. Although human IgG1 bispecific antibodies have been generated, few attempts have been reported in the scientific literature that extend bispecific antibodies to other human antibody isotypes. In this paper, we report our work expanding the knobs-into-holes bispecific antibody technology to the human IgG4 isotype. We apply this approach to generate a bispecific antibody that targets IL-4 and IL-13, two cytokines that play roles in type 2 inflammation. We show that IgG4 bispecific antibodies can be generated in large quantities with equivalent efficiency and quality and have comparable pharmacokinetic properties and lung partitioning, compared with the IgG1 isotype. This work broadens the range of published therapeutic bispecific antibodies with natural surface architecture and provides additional options for the generation of bispecific antibodies with differing effector functions through the use of different antibody isotypes.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Regulación de la Expresión Génica , Inmunoglobulina G/inmunología , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Animales , Anticuerpos Biespecíficos/biosíntesis , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Inmunoglobulina G/biosíntesis , Pulmón/inmunología , Pulmón/metabolismo , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos BALB C , Plásmidos/metabolismo , Ingeniería de Proteínas/métodos , Resonancia por Plasmón de Superficie
8.
Cancer Immunol Res ; 12(1): 60-71, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-37902604

RESUMEN

T cell-retargeting therapies have transformed the therapeutic landscape for hematologic diseases. T cell-dependent bispecific antibodies (TDB) function as conditional agonists that induce a polyclonal T-cell response, resulting in target cell destruction and cytokine release. The relationship between this response and its effects on surrounding innate immune populations has not been fully explored. Here we show that treatment with mosunetuzumab in patients results in natural killer (NK) cell activation in the peripheral blood. We modeled this phenomenon in vitro and found that TDB-mediated killing activated NK cells, increasing NK function and antibody-dependent cellular cytotoxicity (ADCC), and enhanced the capability of macrophages to perform antibody-dependent cellular phagocytosis (ADCP). This enhancement was triggered by cytokines released through TDB treatment, with IL2 and IFNγ being major drivers for increased ADCC and ADCP, respectively. Surprisingly, cytolytic ability could be further augmented through neutralization of IL10 for NK cells and TNFα for macrophages. Finally, we showed that TDB treatment enhanced the efficacy of Fc-driven killing to an orthogonal solid tumor target in vivo. These results provide rationale for novel antibody therapy combinations that take advantage of both adaptive and innate immune responses.


Asunto(s)
Anticuerpos Biespecíficos , Citocinas , Humanos , Línea Celular Tumoral , Citotoxicidad Celular Dependiente de Anticuerpos , Linfocitos T , Inmunidad Innata , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico
9.
MAbs ; 16(1): 2362789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38845069

RESUMEN

Bispecific antibodies, including bispecific IgG, are emerging as an important new class of antibody therapeutics. As a result, we, as well as others, have developed engineering strategies designed to facilitate the efficient production of bispecific IgG for clinical development. For example, we have extensively used knobs-into-holes (KIH) mutations to facilitate the heterodimerization of antibody heavy chains and more recently Fab mutations to promote cognate heavy/light chain pairing for efficient in vivo assembly of bispecific IgG in single host cells. A panel of related monospecific and bispecific IgG1 antibodies was constructed and assessed for immunogenicity risk by comparison with benchmark antibodies with known low (Avastin and Herceptin) or high (bococizumab and ATR-107) clinical incidence of anti-drug antibodies. Assay methods used include dendritic cell internalization, T cell proliferation, and T cell epitope identification by in silico prediction and MHC-associated peptide proteomics. Data from each method were considered independently and then together for an overall integrated immunogenicity risk assessment. In toto, these data suggest that the KIH mutations and in vitro assembly of half antibodies do not represent a major risk for immunogenicity of bispecific IgG1, nor do the Fab mutations used for efficient in vivo assembly of bispecifics in single host cells. Comparable or slightly higher immunogenicity risk assessment data were obtained for research-grade preparations of trastuzumab and bevacizumab versus Herceptin and Avastin, respectively. These data provide experimental support for the common practice of using research-grade preparations of IgG1 as surrogates for immunogenicity risk assessment of their corresponding pharmaceutical counterparts.


Asunto(s)
Anticuerpos Biespecíficos , Inmunoglobulina G , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/genética , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/genética , Medición de Riesgo , Trastuzumab/inmunología , Trastuzumab/genética , Animales , Bevacizumab/inmunología , Bevacizumab/genética , Mutación
10.
Nat Cell Biol ; 8(10): 1155-62, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16980959

RESUMEN

Misfolding and aggregation of proteins containing expanded polyglutamine repeats underlie Huntington's disease and other neurodegenerative disorders. Here, we show that the hetero-oligomeric chaperonin TRiC (also known as CCT) physically interacts with polyglutamine-expanded variants of huntingtin (Htt) and effectively inhibits their aggregation. Depletion of TRiC enhances polyglutamine aggregation in yeast and mammalian cells. Conversely, overexpression of a single TRiC subunit, CCT1, is sufficient to remodel Htt-aggregate morphology in vivo and in vitro, and reduces Htt-induced toxicity in neuronal cells. Because TRiC acts during de novo protein biogenesis, this chaperonin may have an early role preventing Htt access to pathogenic conformations. Based on the specificity of the Htt-CCT1 interaction, the CCT1 substrate-binding domain may provide a versatile scaffold for therapeutic inhibitors of neurodegenerative disease.


Asunto(s)
Chaperoninas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Animales , Células Cultivadas , Células HeLa , Humanos , Proteína Huntingtina , Ratones , Neuronas/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Br J Pharmacol ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783572

RESUMEN

BACKGROUND AND PURPOSE: Monoclonal antibodies (Ab) represent the fastest growing drug class. Knowledge of the biophysical parameters (kon , koff and KD ) that dictate Ab:receptor interaction is critical during the drug discovery process. However, with the increasing complexity of Ab formats and their targets, it became apparent that existing technologies present limitations and are not always suitable to determine these parameters. Therefore, novel affinity determination methods represent an unmet assay need. EXPERIMENTAL APPROACH: We developed a pre-equilibrium kinetic exclusion assay using recent mathematical advances to determine the kon , koff and KD of monoclonal Ab:receptor interactions on living cells. The assay is amenable to all human IgG1 and rabbit Abs. KEY RESULTS: Using our novel assay, we demonstrated for several monoclonal Ab:receptor pairs that the calculated kinetic rate constants were comparable with orthogonal methods that were lower throughput or more resource consuming. We ran simulations to predict the critical conditions to improve the performance of the assays. We further showed that this method could successfully be applied to both suspension and adherent cells. Finally, we demonstrated that kon and koff , but not KD , correlate with in vitro potency for a panel of monoclonal Abs. CONCLUSIONS AND IMPLICATIONS: Our novel assay has the potential to systematically probe binding kinetics of monoclonal Abs to cells and can be incorporated in a screening cascade to identify new therapeutic candidates. Wide-spread adoption of pre-equilibrium assays using physiologically relevant systems will lead to a more holistic understanding of how Ab binding kinetics influence their potency.

12.
Pharmaceutics ; 14(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35631556

RESUMEN

The T cell-dependent bispecific (TDB) antibody, anti-CD79b/CD3, targets CD79b and CD3 cell-surface receptors expressed on B cells and T cells, respectively. Since the anti-CD79b arm of this TDB binds only to human CD79b, a surrogate TDB that binds to cynomolgus monkey CD79b (cyCD79b) was used for preclinical characterization. To evaluate the impact of CD3 binding affinity on the TDB pharmacokinetics (PK), we utilized non-tumor-targeting bispecific anti-gD/CD3 antibodies composed of a low/high CD3 affinity arm along with a monospecific anti-gD arm as controls in monkeys and mice. An integrated PKPD model was developed to characterize PK and pharmacodynamics (PD). This study revealed the impact of CD3 binding affinity on anti-cyCD79b/CD3 PK. The surrogate anti-cyCD79b/CD3 TDB was highly effective in killing CD79b-expressing B cells and exhibited nonlinear PK in monkeys, consistent with target-mediated clearance. A dose-dependent decrease in B cell counts in peripheral blood was observed, as expected. Modeling indicated that anti-cyCD79b/CD3 TDB's rapid and target-mediated clearance may be attributed to faster internalization of CD79b, in addition to enhanced CD3 binding. The model yielded unbiased and precise curve fits. These findings highlight the complex interaction between TDBs and their targets and may be applicable to the development of other biotherapeutics.

13.
Mol Cancer Ther ; 21(6): 974-985, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35364611

RESUMEN

New therapeutics and combination regimens have led to marked clinical improvements for the treatment of a subset of colorectal cancer. Immune checkpoint inhibitors have shown clinical efficacy in patients with mismatch-repair-deficient or microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC). However, patients with microsatellite-stable (MSS) or low levels of microsatellite instable (MSI-L) colorectal cancer have not benefited from these immune modulators, and the survival outcome remains poor for the majority of patients diagnosed with mCRC. In this article, we describe the discovery of a novel T-cell-dependent bispecific antibody (TDB) targeting tumor-associated antigen LY6G6D, LY6G6D-TDB, for the treatment of colorectal cancer. RNAseq analysis showed that LY6G6D was differentially expressed in colorectal cancer with high prevalence in MSS and MSI-L subsets, whereas LY6G6D expression in normal tissues was limited. IHC confirmed the elevated expression of LY6G6D in primary and metastatic colorectal tumors, whereas minimal or no expression was observed in most normal tissue samples. The optimized LY6G6D-TDB, which targets a membrane-proximal epitope of LY6G6D and binds to CD3 with high affinity, exhibits potent antitumor activity both in vitro and in vivo. In vitro functional assays show that LY6G6D-TDB-mediated T-cell activation and cytotoxicity are conditional and target dependent. In mouse xenograft tumor models, LY6G6D-TDB demonstrates antitumor efficacy as a single agent against established colorectal tumors, and enhanced efficacy can be achieved when LY6G6D-TDB is combined with PD-1 blockade. Our studies provide evidence for the therapeutic potential of LY6G6D-TDB as an effective treatment option for patients with colorectal cancer.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias Colorrectales , Inmunoglobulinas , Animales , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoglobulinas/inmunología , Ratones , Inestabilidad de Microsatélites , Linfocitos T/inmunología
14.
Leukemia ; 36(4): 1006-1014, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35001074

RESUMEN

Despite the recent progress, multiple myeloma (MM) is still essentially incurable and there is a need for additional effective treatments with good tolerability. RO7297089 is a novel bispecific BCMA/CD16A-directed innate cell engager (ICE®) designed to induce BCMA+ MM cell lysis through high affinity binding of CD16A and retargeting of NK cell cytotoxicity and macrophage phagocytosis. Unlike conventional antibodies approved in MM, RO7297089 selectively targets CD16A with no binding of other Fcγ receptors, including CD16B on neutrophils, and irrespective of 158V/F polymorphism, and its activity is less affected by competing IgG suggesting activity in the presence of M-protein. Structural analysis revealed this is due to selective interaction with a single residue (Y140) uniquely present in CD16A opposite the Fc binding site. RO7297089 induced tumor cell killing more potently than conventional antibodies (wild-type and Fc-enhanced) and induced lysis of BCMA+ cells at very low effector-to-target ratios. Preclinical toxicology data suggested a favorable safety profile as in vitro cytokine release was minimal and no RO7297089-related mortalities or adverse events were observed in cynomolgus monkeys. These data suggest good tolerability and the potential of RO7297089 to be a novel effective treatment of MM patients.


Asunto(s)
Anticuerpos Biespecíficos , Mieloma Múltiple , Antígeno de Maduración de Linfocitos B , Humanos , Mieloma Múltiple/tratamiento farmacológico , Fagocitosis , Receptores de IgG
15.
MAbs ; 13(1): 1944017, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225571

RESUMEN

Bispecific antibodies (bsAbs) recognize and bind two different targets or two epitopes of the same antigen, making them an attractive diagnostic and treatment modality. Compared to the production of conventional bivalent monospecific antibodies, bsAbs require greater engineering and manufacturing. Therefore, bsAbs are more likely to differ from endogenous immunoglobulins and contain new epitopes that can increase immunogenic risk. Anti-A/B is a bsAb designed using a 'knobs-into-holes' (KIH) format. Anti-A/B exhibited an unexpectedly high immunogenicity in both preclinical and clinical studies, resulting in early termination of clinical development. Here, we used an integrated approach that combined in silico analysis, in vitro assays, and an in vivo study in non-human primates to characterize anti-A/B immunogenicity. Our findings indicated that the immunogenicity is associated with epitopes in the anti-B arm and not with mutations engineered through the KIH process. Our results showed the value of this integrated approach for performing immunogenicity risk assessment during clinical candidate selection to effectively mitigate risks during bsAb development.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Técnicas Inmunológicas/métodos , Animales , Macaca fascicularis
16.
Mol Cancer Ther ; 20(10): 1956-1965, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34253591

RESUMEN

T-cell-dependent bispecific antibodies (TDB) have been a major advancement in the treatment of cancer, allowing for improved targeting and efficacy for large molecule therapeutics. TDBs are comprised of one arm targeting a surface antigen on a cancer cell and another targeting an engaging surface antigen on a cytotoxic T cell. To impart this function, the antibody must be in a bispecific format as opposed to the more conventional bivalent format. Through in vitro and in vivo studies, we sought to determine the impact of changing antibody valency on solid tumor distribution and catabolism. A bivalent anti-HER2 antibody exhibited higher catabolism than its full-length monovalent binding counterpart in vivo by both invasive tissue harvesting and noninvasive single photon emission computed tomography/X-ray computed tomography imaging despite similar systemic exposures for the two molecules. To determine what molecular factors drove in vivo distribution and uptake, we developed a mechanistic model for binding and catabolism of monovalent and bivalent HER2 antibodies in KPL4 cells. This model suggests that observed differences in cellular uptake of monovalent and bivalent antibodies are caused by the change in apparent affinity conferred by avidity as well as differences in internalization and degradation rates of receptor bound antibodies. To our knowledge, this is the first study to directly compare the targeting abilities of monovalent and bivalent full-length antibodies. These findings may inform diverse antibody therapeutic modalities, including T-cell-redirecting therapies and drug delivery strategies relying upon receptor internalization.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/farmacocinética , Afinidad de Anticuerpos , Neoplasias de la Mama/tratamiento farmacológico , Receptor ErbB-2/antagonistas & inhibidores , Linfocitos T Citotóxicos/inmunología , Animales , Anticuerpos Biespecíficos/inmunología , Apoptosis , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Humanos , Ratones , Ratones SCID , Receptor ErbB-2/inmunología , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Data Brief ; 30: 105435, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32274410

RESUMEN

The data supplied in this work are related to the research article entitled "Characterization of Bispecific and Mispaired IgGs by Native Charge-Variant Mass Spectrometry" (Phung et al., 2019). This data article describes a powerful analytical platform using native weak cation exchange chromatography coupled to a high-resolution mass spectrometer, charge variant mass spectrometry (CV-MS), to characterize bispecific and mispaired antibody species. Elution order is investigated through analytical methods and molecular modeling in an effort to understand the intrinsic charge, size and shape differences of these molecules.

18.
Trends Cell Biol ; 14(11): 598-604, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15519848

RESUMEN

Chaperonins are key components of the cellular chaperone machinery. These large, cylindrical complexes contain a central cavity that binds to unfolded polypeptides and sequesters them from the cellular environment. Substrate folding then occurs in this central cavity in an ATP-dependent manner. The eukaryotic chaperonin TCP-1 ring complex (TRiC, also called CCT) is indispensable for cell survival because the folding of an essential subset of cytosolic proteins requires TRiC, and this function cannot be substituted by other chaperones. This specificity indicates that TRiC has evolved structural and mechanistic features that distinguish it from other chaperones. Although knowledge of this unique complex is in its infancy, we review recent advances that open the way to understanding the secrets of its folding chamber.


Asunto(s)
Células Eucariotas/química , Proteínas Asociadas a Microtúbulos/fisiología , Chaperonas Moleculares/fisiología , Proteínas Nucleares/fisiología , Pliegue de Proteína , Animales , Humanos , Conformación Proteica , Región del Complejo T del Genoma
19.
J Immunother Cancer ; 7(1): 207, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31387641

RESUMEN

BACKGROUND: One of the mechanisms by which tumors evade immune surveillance is through shedding of the major histocompatibility complex (MHC) class I chain-related protein A and B (MICA/B) from their cell surface. MICA/B are ligands for the activating receptor NKG2D on NK and CD8 T cells. This shedding reduces cell surface levels of MICA/B and impairs NKG2D recognition. Shed MICA/B can also mask NKG2D receptor and is thought to induce NKG2D internalization, further compromising immune surveillance by NK cells. METHODS: We isolated human primary NK cells from normal donors and tested the suppressive activity of soluble recombinant MICA in vitro. Utilizing a panel of novel anti-MICA antibodies, we further examined the stimulatory activities of anti-MICA antibodies that reversed the suppressive effects of soluble MICA. RESULTS: We show that suppressive effects of soluble MICA (sMICA) on NK cell cytolytic activity was not due to the down-regulation of cell surface NKG2D. In the presence of an α3 domain-specific MICA antibody, which did not obstruct NKG2D binding, sMICA-mediated NK cell suppression was completely reversed. Reversal of NK cell inhibition by sMICA was mediated by immune complex formation that agonized NKG2D signaling. Furthermore, this restorative activity was dependent on antibody Fc effector function as the introduction of Fc mutations to abrogate Fc receptor binding failed to reverse sMICA-mediated NK cell suppression. Furthermore, MICA immune complexes preformed with an α3 domain-specific antibody (containing a wild-type Fc) induced IFN-γ and TNF-α secretion by NK cells in the absence of cancer cells, whereas MICA immune complexes preformed with the Fc effectorless antibody failed to induce IFN-γ and TNF-α secretion. Finally, we demonstrated that MICA immune complexes formed with the α3 domain-specific antibody activates NKG2D on NK cells leading to the release of IFN-γ. CONCLUSIONS: Our results demonstrate that an α3 domain-specific MICA antibody can circumvent sMICA-mediated suppression of NK cell cytolytic activity. Moreover, our data suggest that MICA immune complexes formed with α3-specific antibodies can activate NKG2D receptor and restore NK cell function in a Fc-dependent manner. The clinical utility of α3 domain-specific MICA/B antibodies may hold great promise as a new strategy for cancer immunotherapy.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Línea Celular , Humanos , Transfección
20.
MAbs ; 11(1): 75-93, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30307368

RESUMEN

As an immune evasion strategy, MICA and MICB, the major histocompatibility complex class I homologs, are proteolytically cleaved from the surface of cancer cells leading to impairment of CD8 + T cell- and natural killer cell-mediated immune responses. Antibodies that inhibit MICA/B shedding from tumors have therapeutic potential, but the optimal epitopes are unknown. Therefore, we developed a high-resolution, high-throughput glycosylation-engineered epitope mapping (GEM) method, which utilizes site-specific insertion of N-linked glycans onto the antigen surface to mask local regions. We apply GEM to the discovery of epitopes important for shedding inhibition of MICA/B and validate the epitopes at the residue level by alanine scanning and X-ray crystallography (Protein Data Bank accession numbers 6DDM (1D5 Fab-MICA*008), 6DDR (13A9 Fab-MICA*008), 6DDV (6E1 Fab-MICA*008). Furthermore, we show that potent inhibition of MICA shedding can be achieved by antibodies that bind GEM epitopes adjacent to previously reported cleavage sites, and that these anti-MICA/B antibodies can prevent tumor growth in vivo.


Asunto(s)
Anticuerpos/inmunología , Descubrimiento de Drogas/métodos , Mapeo Epitopo/métodos , Antígenos de Histocompatibilidad Clase I/inmunología , Epítopos/química , Epítopos/inmunología , Glicosilación , Antígenos de Histocompatibilidad Clase I/química , Humanos , Ingeniería de Proteínas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA