Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 611(7934): 115-123, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36180795

RESUMEN

Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.


Asunto(s)
Descubrimiento de Drogas , Predisposición Genética a la Enfermedad , Accidente Cerebrovascular Isquémico , Humanos , Isquemia Encefálica/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Accidente Cerebrovascular Isquémico/genética , Terapia Molecular Dirigida , Herencia Multifactorial , Europa (Continente)/etnología , Asia Oriental/etnología , África/etnología
2.
Mol Pain ; 19: 17448069231210648, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37845028

RESUMEN

Chronic low back pain (cLBP) is associated with insomnia and advanced age. Emerging evidence suggests that the severity of both sleep disorders (like insomnia) and chronic pain are associated with a faster pace of biological aging. We aimed to determine whether the pace of biological age mediates the relationship between insomnia and the impact of cLBP in a sample of community-dwelling adults ages 19 to 85 years. Participants (49 with no pain, 32 with low-impact pain, and 37 with high-impact pain) completed sociodemographic, pain, insomnia, and short physical performance battery assessments. We calculated the pace of biological aging using DunedinPACE from blood leukocyte DNA. On average, individuals with high-impact cLBP had significantly faster biological aging than those with low-impact and no chronic pain (p < .001). Bivariate associations of DunedinPACE scores with insomnia severity and functional performance were significant at p < .01 (rs = 0.324 and -0.502, respectively). After adjusting for race and sex, the association of insomnia severity and the impact of cLBP was partially mediated by the pace of biological aging (ß = 0.070, p < .001). Also, the association of insomnia severity with functional performance was partially mediated by the pace of biological aging (ß = -0.105, p < .001). Thus, insomnia remains strongly predictive of cLBP outcomes, and the pace of biological aging helps explain this association. Future prospective studies with repeated assessments are needed to uncover the directionality of these complex relationships and ultimately develop interventions to manage cLBP.


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Trastornos del Inicio y del Mantenimiento del Sueño , Adulto , Humanos , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Trastornos del Inicio y del Mantenimiento del Sueño/complicaciones , Estudios Prospectivos , Envejecimiento , Dolor Crónico/complicaciones
4.
Carcinogenesis ; 43(3): 190-202, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35084457

RESUMEN

Breast cancer has strong developmental origins and maternal nutrition composition may influence later-life breast cancer risk in the offspring. Our study focused on a bioactive dietary component, genistein (GE) enriched in soybean products, to investigate specific timing of maternal GE exposure that may influence preventive efficacy of GE on offspring breast cancer later in life, and to explore the potential epigenetic mechanisms. Our results indicate a time-dependent effect of maternal GE exposure on early-life breast cancer development in offspring mice. Through integrated transcriptome and methylome analyses, we identified several candidate genes showing significantly differential gene expression and DNA methylation changes. We further found maternal long-term GE treatment can induce inherited epigenetic landmark changes in a candidate tumor suppressor gene, Trp63, resulting in transcriptional activation of Trp63 and induction of the downstream target genes. Our results suggest that maternal long-term exposure to soybean GE may influence early-life epigenetic reprogramming processes, which may contribute to its temporal preventive effects on breast cancer in the offspring. This study provides important mechanistic insights into an appropriate maternal administration of soybean products on prevention of breast cancer later in offspring life.


Asunto(s)
Fabaceae , Neoplasias , Animales , Metilación de ADN , Epigénesis Genética , Genisteína/farmacología , Ratones , Glycine max/genética
5.
Genet Epidemiol ; 45(5): 549-560, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33998053

RESUMEN

BACKGROUND: Mendelian randomization (MR) applies instrumental variable (IV) methods to observational data using a genetic variant as an IV. Several Monte-Carlo studies investigate the performance of MR methods with binary outcomes, but few consider them in conjunction with binary risk factors. OBJECTIVE: To develop a novel MR estimator for scenarios with a binary risk factor and outcome; and compare to existing MR estimators via simulations and real data analysis. METHODS: A bivariate Bernoulli distribution is adapted to the IV setting. Empirical bias and asymptotic coverage probabilities are estimated via simulations. The proposed method is compared to the Wald method, two-stage predictor substitution (2SPS), two-stage residual inclusion (2SRI), and the generalized method of moments (GMM). An analysis is performed using existing data from the CLEAR study to estimate the potential causal effect of smoking on rheumatoid arthritis risk in African Americans. RESULTS: Bias was low for the proposed method and comparable to 2SPS. The Wald method was often biased towards the null. Coverage was adequate for the proposed method, 2SPS, and 2SRI. Coverage for the Wald and GMM methods was poor in several scenarios. The causal effect of ever smoking on rheumatoid arthritis risk was not statistically significant using a variety of genetic instruments. CONCLUSIONS: Simulations suggest the proposed MR method is sound with binary risk factors and outcomes, and comparable to 2SPS and 2SRI in terms of bias. The proposed method also provides more natural framework for hypothesis testing compared to 2SPS or 2SRI, which require ad-hoc variance adjustments.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Fumar , Causalidad , Humanos , Modelos Genéticos , Factores de Riesgo , Fumar/efectos adversos , Fumar/genética
6.
Pharmacogenomics J ; 19(1): 97-108, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29855607

RESUMEN

We evaluated interactions of SNP-by-ACE-I/ARB and SNP-by-TD on serum potassium (K+) among users of antihypertensive treatments (anti-HTN). Our study included seven European-ancestry (EA) (N = 4835) and four African-ancestry (AA) cohorts (N = 2016). We performed race-stratified, fixed-effect, inverse-variance-weighted meta-analyses of 2.5 million SNP-by-drug interaction estimates; race-combined meta-analysis; and trans-ethnic fine-mapping. Among EAs, we identified 11 significant SNPs (P < 5 × 10-8) for SNP-ACE-I/ARB interactions on serum K+ that were located between NR2F1-AS1 and ARRDC3-AS1 on chromosome 5 (top SNP rs6878413 P = 1.7 × 10-8; ratio of serum K+ in ACE-I/ARB exposed compared to unexposed is 1.0476, 1.0280, 1.0088 for the TT, AT, and AA genotypes, respectively). Trans-ethnic fine mapping identified the same group of SNPs on chromosome 5 as genome-wide significant for the ACE-I/ARB analysis. In conclusion, SNP-by-ACE-I /ARB interaction analyses uncovered loci that, if replicated, could have future implications for the prevention of arrhythmias due to anti-HTN treatment-related hyperkalemia. Before these loci can be identified as clinically relevant, future validation studies of equal or greater size in comparison to our discovery effort are needed.


Asunto(s)
Negro o Afroamericano/genética , Peptidil-Dipeptidasa A/genética , Polimorfismo de Nucleótido Simple/genética , Potasio/sangre , Inhibidores de los Simportadores del Cloruro de Sodio/uso terapéutico , Población Blanca/genética , Anciano , Antihipertensivos/uso terapéutico , Cromosomas Humanos Par 5/genética , Europa (Continente) , Femenino , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Persona de Mediana Edad
7.
J Lipid Res ; 59(4): 722-729, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29463568

RESUMEN

Our understanding of genetic influences on the response of lipids to specific interventions is limited. In this study, we sought to elucidate effects of rare genetic variants on lipid response to a high-fat meal challenge and fenofibrate (FFB) therapy in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) cohort using an exome-wide sequencing-based association study. Our results showed that the rare coding variants in ITGA7, SIPA1L2, and CEP72 are significantly associated with fasting LDL cholesterol response to FFB (P = 1.24E-07), triglyceride postprandial area under the increase (AUI) (P = 2.31E-06), and triglyceride postprandial AUI response to FFB (P = 1.88E-06), respectively. We sought to replicate the association for SIPA1L2 in the Heredity and Phenotype Intervention (HAPI) Heart Study, which included a high-fat meal challenge but not FFB treatment. The associated rare variants in GOLDN were not observed in the HAPI Heart study, and thus the gene-based result was not replicated. For functional validation, we found that gene transcript level of SIPA1L2 is associated with triglyceride postprandial AUI (P < 0.05) in GOLDN. Our study suggests unique genetic mechanisms contributing to the lipid response to the high-fat meal challenge and FFB therapy.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Fenofibrato/uso terapéutico , Lípidos/genética , Estudios de Cohortes , Metilación de ADN/genética , Exoma , Fenofibrato/administración & dosificación , Humanos , Análisis de Secuencia de ARN , Población Blanca
8.
Pharmacogenet Genomics ; 26(7): 324-33, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27002377

RESUMEN

BACKGROUND: Fibrates are commonly prescribed for hypertriglyceridemia, but they also lower LDL cholesterol and increase HDL cholesterol. Large interindividual variations in lipid response suggest that some patients may benefit more than others and genetic studies could help identify such patients. METHODS: We carried out the first genome-wide association study of lipid response to fenofibrate using data from two well-characterized clinical trials: the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Study. Genome-wide association study data from both studies were imputed to the 1000 Genomes CEU reference panel (phase 1). Lipid response was modeled as the log ratio of the post-treatment lipid level to the pretreatment level. Linear mixed models (GOLDN, N=813 from 173 families) and linear regression models (ACCORD, N=781) adjusted for pretreatment lipid level, demographic variables, clinical covariates, and ancestry were used to evaluate the association of genetic markers with lipid response. Among Caucasians, the results were combined using inverse-variance weighted fixed-effects meta-analyses. The main findings from the meta-analyses were examined in other ethnic groups from the HyperTG study (N=267 Hispanics) and ACCORD (N=83 Hispanics, 138 African Americans). RESULTS: A known lipid locus harboring the pre-B-cell leukemia homeobox 4 (PBX4) gene on chromosome 19 is important for LDL cholesterol response to fenofibrate (smallest P=1.5×10). The main results replicated with nominal statistical significance in Hispanics from ACCORD (P<0.05). CONCLUSION: Future research should evaluate the usefulness of this locus to refine clinical strategies for lipid-lowering treatments.


Asunto(s)
Fenofibrato/uso terapéutico , Estudio de Asociación del Genoma Completo , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/genética , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lípidos/sangre , Ensayos Clínicos como Asunto , Femenino , Marcadores Genéticos , Genotipo , Humanos , Hipolipemiantes/uso terapéutico , Masculino , Metaanálisis como Asunto , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Población Blanca
9.
Rheumatol Int ; 36(2): 263-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26427508

RESUMEN

We hypothesized that serum urate-associated SNPs, individually or collectively, interact with BMI and renal disease to contribute to risk of incident gout. We measured the incidence of gout and associated comorbidities using the original and offspring cohorts of the Framingham Heart Study. We used direct and imputed genotypes for eight validated serum urate loci. We fit binomial regression models of gout incidence as a function of the covariates, age, type 2 diabetes, sex, and all main and interaction effects of the eight serum urate SNPs with BMI and renal disease. Models were also fit with a genetic risk score for serum urate levels which corresponds to the sum of risk alleles at the eight SNPs. Model covariates, age (P = 5.95E-06), sex (P = 2.46E-39), diabetes (P = 2.34E-07), BMI (P = 1.14E-11) and the SNPs, rs1967017 (P = 9.54E-03), rs13129697 (P = 4.34E-07), rs2199936 (P = 7.28E-03) and rs675209 (P = 4.84E-02) were all associated with incident gout. No BMI by SNP or BMI by serum urate genetic risk score interactions were statistically significant, but renal disease by rs1106766 was statistically significant (P = 6.12E-03). We demonstrated that minor alleles of rs1106766 (intergenic, INHBC) were negatively associated with the risk of incident gout in subjects without renal disease, but not for individuals with renal disease. These analyses demonstrate that a significant component of the risk of gout may involve complex interplay between genes and environment.


Asunto(s)
Índice de Masa Corporal , Interacción Gen-Ambiente , Gota/genética , Hiperuricemia/genética , Enfermedades Renales/epidemiología , Polimorfismo de Nucleótido Simple , Ácido Úrico/sangre , Factores de Edad , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Comorbilidad , Femenino , Frecuencia de los Genes , Sitios Genéticos , Predisposición Genética a la Enfermedad , Gota/sangre , Gota/diagnóstico , Gota/epidemiología , Humanos , Hiperuricemia/sangre , Hiperuricemia/diagnóstico , Hiperuricemia/epidemiología , Incidencia , Enfermedades Renales/diagnóstico , Masculino , Massachusetts/epidemiología , Persona de Mediana Edad , Modelos Genéticos , Modelos Estadísticos , Fenotipo , Factores de Riesgo , Factores Sexuales
10.
J Pain ; 25(4): 974-983, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37907115

RESUMEN

This study aimed to determine if and how the pace of biological aging was associated with nonspecific chronic low back pain (cLBP) and compare what measure of epigenetic age acceleration most strongly predicts cLBP outcomes. We used the Dunedin Pace of Aging from the Epigenome (DunedinPACE), Horvath's, Hannum's, and PhenoAge clocks to determine the pace of biological aging in 69 cLBP, and 49 pain-free controls (PFCs) adults, ages 18 to 85 years. On average, participants with cLBP had higher DunedinPACE (P < .001) but lower Horvath (P = .04) and Hannum (P = .02) accelerated epigenetic age than PFCs. There was no significant difference in PhenoAge acceleration between the cLBP and PFC groups (P = .97). DunedinPACE had the largest effect size (Cohen's d = .78) on group differences. In univariate regressions, a unit increase in DunedinPACE score was associated with 265.98 times higher odds of cLBP than the PFC group (P < .001). After controlling for sex, race, and body mass index (BMI), the odds ratio of cLBP to PFC group was 149.62 (P < .001). Furthermore, among participants with cLBP, DunedinPACE scores positively correlated with pain severity (rs = .385, P = .001) and interference (rs = .338, P = .005). Epigenetic age acceleration from Horvath, Hannum, and PhenoAge clocks were not significant predictors of cLBP. The odds of a faster pace of biological aging are higher among adults with cLBP, and this was associated with greater pain severity and disability. Future interventions to slow the pace of biological aging may improve cLBP outcomes. PERSPECTIVE: Accelerated epigenetic aging is common among adults with nonspecific cLBP. Higher DunedinPACE scores positively correlate with pain severity and interference, and better predict cLBP than other DNA methylation clocks. Interventions to slow the pace of biological aging may be viable targets for improving pain outcomes.


Asunto(s)
Dolor de la Región Lumbar , Adulto , Humanos , Envejecimiento , Metilación de ADN , Epigenoma , Oportunidad Relativa , Epigénesis Genética
11.
NPJ Genom Med ; 9(1): 34, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816462

RESUMEN

Kawasaki disease (KD) is a multisystem inflammatory illness of infants and young children that can result in acute vasculitis. The mechanism of coronary artery aneurysms (CAA) in KD despite intravenous gamma globulin (IVIG) treatment is not known. We performed a Whole Genome Sequencing (WGS) association analysis in a racially diverse cohort of KD patients treated with IVIG, both using AHA guidelines. We defined coronary aneurysm (CAA) (N = 234) as coronary z ≥ 2.5 and large coronary aneurysm (CAA/L) (N = 92) as z ≥ 5.0. We conducted logistic regression models to examine the association of genetic variants with CAA/L during acute KD and with persistence >6 weeks using an additive model between cases and 238 controls with no CAA. We adjusted for age, gender and three principal components of genetic ancestry. The top significant variants associated with CAA/L were in the intergenic regions (rs62154092 p < 6.32E-08 most significant). Variants in SMAT4, LOC100127, PTPRD, TCAF2 and KLRC2 were the most significant non-intergenic SNPs. Functional mapping and annotation (FUMA) analysis identified 12 genomic risk loci with eQTL or chromatin interactions mapped to 48 genes. Of these NDUFA5 has been implicated in KD CAA and MICU and ZMAT4 has potential functional implications. Genetic risk score using these 12 genomic risk loci yielded an area under the receiver operating characteristic curve (AUC) of 0.86. This pharmacogenomics study provides insights into the pathogenesis of CAA/L in IVIG-treated KD and shows that genomics can help define the cause of CAA/L to guide management and improve risk stratification of KD patients.

12.
medRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352371

RESUMEN

Background: Kawasaki disease (KD) is a multisystem inflammatory illness of infants and young children that can result in acute vasculitis. The pathological walls of afflicted coronary arteries show propensity for forming thrombosis and aneurysms. The mechanism of coronary artery aneurysms (CAA) despite intravenous gamma globulin (IVIG) treatment is not known. Methods: We performed a Whole Genome Sequencing (WGS) association analysis in a racially diverse cohort of KD patients treated with IVIG, both using AHA guidelines. We defined coronary aneurysm (CAA) (N = 234) as coronary z>2.5 and large coronary aneurysm (CAA/L) (N = 92) as z>5.0. We conducted logistic regression models to examine the association of genetic variants with CAA/L during acute KD and with persistence >6 weeks using an additive model between cases and 238 controls with no CAA. We adjusted for age, gender and three principal components of genetic ancestry. We performed functional mapping and annotation (FUMA) analysis and further assessed the predictive risk score of genomic risk loci using the area under the receiver operating characteristic curve (AUC). Results: The top significant variants associated with CAA/L were in the intergenic regions (rs62154092 p<6.32E-08 most significant). Variants in SMAT4, LOC100127 , PTPRD, TCAF2 and KLRC2 were the most significant non-intergenic SNPs. FUMA identified 12 genomic risk loci with eQTL or chromatin interactions mapped to 48 genes. Of these NDUFA5 has been implicated in KD CAA and MICU and ZMAT4 has potential functional implications. Genetic risk score using these 12 genomic risk loci yielded an AUC of 0.86. Conclusions: This pharmacogenomics study provides insights into the pathogenesis of CAA/L in IVIG-treated KD patients. We have identified multiple novel SNPs associated with CAA/L and related genes with potential functional implications. The study shows that genomics can help define the cause of CAA/L to guide management and improve risk stratification of KD patients.

13.
Toxicol Sci ; 200(1): 79-94, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38547396

RESUMEN

Many oncology drugs have been found to induce cardiotoxicity in a subset of patients, which significantly limits their clinical use and impedes the benefit of lifesaving anticancer treatments. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) carry donor-specific genetic information and have been proposed for exploring the interindividual difference in oncology drug-induced cardiotoxicity. Herein, we evaluated the inter- and intraindividual variability of iPSC-CM-related assays and presented a proof of concept to prospectively predict doxorubicin (DOX)-induced cardiotoxicity (DIC) using donor-specific iPSC-CMs. Our findings demonstrated that donor-specific iPSC-CMs exhibited greater line-to-line variability than the intraindividual variability in impedance cytotoxicity and transcriptome assays. The variable and dose-dependent cytotoxic responses of iPSC-CMs resembled those observed in clinical practice and largely replicated the reported mechanisms. By categorizing iPSC-CMs into resistant and sensitive cell lines based on their time- and concentration-related phenotypic responses to DOX, we found that the sensitivity of donor-specific iPSC-CMs to DOX may predict in vivo DIC risk. Furthermore, we identified a differentially expressed gene, DND microRNA-mediated repression inhibitor 1 (DND1), between the DOX-resistant and DOX-sensitive iPSC-CMs. Our results support the utilization of donor-specific iPSC-CMs in assessing interindividual differences in DIC. Further studies will encompass a large panel of donor-specific iPSC-CMs to identify potential novel molecular and genetic biomarkers for predicting DOX and other oncology drug-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Prueba de Estudio Conceptual , Doxorrubicina/toxicidad , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Antibióticos Antineoplásicos/toxicidad , Relación Dosis-Respuesta a Droga , Antineoplásicos/toxicidad
14.
Sci Rep ; 14(1): 14009, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890458

RESUMEN

Type 2 diabetes (T2D) is caused by both genetic and environmental factors and is associated with an increased risk of cardiorenal complications and mortality. Though disproportionately affected by the condition, African Americans (AA) are largely underrepresented in genetic studies of T2D, and few estimates of heritability have been calculated in this race group. Using genome-wide association study (GWAS) data paired with phenotypic data from ~ 19,300 AA participants of the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, Genetics of Hypertension Associated Treatments (GenHAT) study, and the Electronic Medical Records and Genomics (eMERGE) network, we estimated narrow-sense heritability using two methods: Linkage-Disequilibrium Adjusted Kinships (LDAK) and Genome-Wide Complex Trait Analysis (GCTA). Study-level heritability estimates adjusting for age, sex, and genetic ancestry ranged from 18% to 34% across both methods. Overall, the current study narrows the expected range for T2D heritability in this race group compared to prior estimates, while providing new insight into the genetic basis of T2D in AAs for ongoing genetic discovery efforts.


Asunto(s)
Negro o Afroamericano , Diabetes Mellitus Tipo 2 , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Diabetes Mellitus Tipo 2/genética , Negro o Afroamericano/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Polimorfismo de Nucleótido Simple , Desequilibrio de Ligamiento , Fenotipo , Herencia Multifactorial/genética
15.
Diabetes ; 73(6): 993-1001, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38470993

RESUMEN

African Americans (AAs) have been underrepresented in polygenic risk score (PRS) studies. Here, we integrated genome-wide data from multiple observational studies on type 2 diabetes (T2D), encompassing a total of 101,987 AAs, to train and optimize an AA-focused T2D PRS (PRSAA), using a Bayesian polygenic modeling method. We further tested the score in three independent studies with a total of 7,275 AAs and compared the PRSAA with other published scores. Results show that a 1-SD increase in the PRSAA was associated with 40-60% increase in the odds of T2D (odds ratio [OR] 1.60, 95% CI 1.37-1.88; OR 1.40, 95% CI 1.16-1.70; and OR 1.45, 95% CI 1.30-1.62) across three testing cohorts. These models captured 1.0-2.6% of the variance (R2) in T2D on the liability scale. The positive predictive values for three calculated score thresholds (the top 2%, 5%, and 10%) ranged from 14 to 35%. The PRSAA, in general, performed similarly to existing T2D PRS. The need remains for larger data sets to continue to evaluate the utility of within-ancestry scores in the AA population.


Asunto(s)
Negro o Afroamericano , Diabetes Mellitus Tipo 2 , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Negro o Afroamericano/genética , Herencia Multifactorial/genética , Masculino , Femenino , Persona de Mediana Edad , Teorema de Bayes , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Adulto , Anciano
16.
Genome Med ; 16(1): 25, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317187

RESUMEN

BACKGROUND: African ancestry populations have the highest burden of stroke worldwide, yet the genetic basis of stroke in these populations is obscure. The Stroke Investigative Research and Educational Network (SIREN) is a multicenter study involving 16 sites in West Africa. We conducted the first-ever genome-wide association study (GWAS) of stroke in indigenous Africans. METHODS: Cases were consecutively recruited consenting adults (aged > 18 years) with neuroimaging-confirmed ischemic stroke. Stroke-free controls were ascertained using a locally validated Questionnaire for Verifying Stroke-Free Status. DNA genotyping with the H3Africa array was performed, and following initial quality control, GWAS datasets were imputed into the NIH Trans-Omics for Precision Medicine (TOPMed) release2 from BioData Catalyst. Furthermore, we performed fine-mapping, trans-ethnic meta-analysis, and in silico functional characterization to identify likely causal variants with a functional interpretation. RESULTS: We observed genome-wide significant (P-value < 5.0E-8) SNPs associations near AADACL2 and miRNA (MIR5186) genes in chromosome 3 after adjusting for hypertension, diabetes, dyslipidemia, and cardiac status in the base model as covariates. SNPs near the miRNA (MIR4458) gene in chromosome 5 were also associated with stroke (P-value < 1.0E-6). The putative genes near AADACL2, MIR5186, and MIR4458 genes were protective and novel. SNPs associations with stroke in chromosome 2 were more than 77 kb from the closest gene LINC01854 and SNPs in chromosome 7 were more than 116 kb to the closest gene LINC01446 (P-value < 1.0E-6). In addition, we observed SNPs in genes STXBP5-AS1 (chromosome 6), GALTN9 (chromosome 12), FANCA (chromosome 16), and DLGAP1 (chromosome 18) (P-value < 1.0E-6). Both genomic regions near genes AADACL2 and MIR4458 remained significant following fine mapping. CONCLUSIONS: Our findings identify potential roles of regulatory miRNA, intergenic non-coding DNA, and intronic non-coding RNA in the biology of ischemic stroke. These findings reveal new molecular targets that promise to help close the current gaps in accurate African ancestry-based genetic stroke's risk prediction and development of new targeted interventions to prevent or treat stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , Accidente Cerebrovascular , Adulto , Humanos , Estudio de Asociación del Genoma Completo , Accidente Cerebrovascular Isquémico/complicaciones , Predisposición Genética a la Enfermedad , Accidente Cerebrovascular/genética , Genómica , Polimorfismo de Nucleótido Simple , ADN , Estudios Multicéntricos como Asunto
17.
Pathogens ; 12(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37242362

RESUMEN

Trichomonas vaginalis is the most common non-viral sexually transmitted infection. 5-nitroimidazoles are the only FDA-approved medications for T. vaginalis treatment. However, 5-nitroimidazole resistance has been increasingly recognized and may occur in up to 10% of infections. We aimed to delineate mechanisms of T. vaginalis resistance using transcriptome profiling of metronidazole (MTZ)-resistant and sensitive T. vaginalis clinical isolates. In vitro, 5-nitroimidazole susceptibility testing was performed to determine minimum lethal concentrations (MLCs) for T. vaginalis isolates obtained from women who had failed treatment (n = 4) or were successfully cured (n = 4). RNA sequencing, bioinformatics, and biostatistical analyses were performed to identify differentially expressed genes (DEGs) in the MTZ-resistant vs. sensitive T. vaginalis isolates. RNA sequencing identified 304 DEGs, 134 upregulated genes and 170 downregulated genes in the resistant isolates. Future studies with more T. vaginalis isolates with a broad range of MLCs are needed to determine which genes may represent the best alternative targets in drug-resistant strains.

18.
Front Genet ; 14: 1184661, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779905

RESUMEN

Introduction: Metabolic syndrome (MetS) increases the risk of cardiovascular disease and death. Previous '-omics' studies have identified dysregulated serum metabolites and aberrant DNA methylation in the setting of MetS. However, the relationship between the metabolome and epigenome have not been elucidated. In this study, we identified serum metabolites associated with MetS and DNA methylation, and we conducted bidirectional Mendelian randomization (MR) to assess causal relationships between metabolites and methylation. Methods: We leveraged metabolomic and genomic data from a national United States cohort of older adults (REGARDS), as well as metabolomic, epigenomic, and genomic data from a family-based study of hypertension (HyperGEN). We conducted metabolite profiling for MetS in REGARDS using weighted logistic regression models and validated them in HyperGEN. Validated metabolites were selected for methylation studies which fit linear mixed models between metabolites and six CpG sites previously linked to MetS. Statistically significant metabolite-CpG pairs were selected for two-sample, bidirectional MR. Results: Forward MR indicated that glucose and serine metabolites were causal on CpG methylation near CPT1A [B(SE): -0.003 (0.002), p = 0.028 and B(SE): 0.029 (0.011), p = 0.030, respectively] and that serine metabolites were causal on ABCG1 [B(SE): -0.008(0.003), p = 0.006] and SREBF1 [B(SE): -0.009(0.004), p = 0.018] methylation, which suggested a protective effect of serine. Reverse MR showed a bidirectional relationship between cg06500161 (ABCG1) and serine [B(SE): -1.534 (0.668), p = 0.023]. Discussion: The metabolome may contribute to the relationship between MetS and epigenetic modifications.

19.
Front Immunol ; 14: 1287094, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259468

RESUMEN

Introduction: Kawasaki disease (KD) is a diffuse vasculitis in children. Response to high dose intravenous gamma globulin (IVIG), the primary treatment, varies according to genetic background. We sought to identify genetic loci, which associate with treatment response using whole genome sequencing (WGS). Method: We performed WGS in 472 KD patients with 305 IVIG responders and 167 non-responders defined by AHA clinical criteria. We conducted logistic regression models to test additive genetic effect in the entire cohort and in four subgroups defined by ancestry information markers (Whites, African Americans, Asians, and Hispanics). We performed functional mapping and annotation using FUMA to examine genetic variants that are potentially involved IVIG non-response. Further, we conducted SNP-set [Sequence] Kernel Association Test (SKAT) for all rare and common variants. Results: Of the 43,288,336 SNPs (23,660,970 in intergenic regions, 16,764,594 in introns and 556,814 in the exons) identified, the top ten hits associated with IVIG non-response were in FANK1, MAP2K3:KCNJ12, CA10, FRG1DP, CWH43 regions. When analyzed separately in ancestry-based racial subgroups, SNPs in several novel genes were associated. A total of 23 possible causal genes were pinpointed by positional and chromatin mapping. SKAT analysis demonstrated association in the entire MANIA2, EDN1, SFMBT2, and PPP2R5E genes and segments of CSMD2, LINC01317, HIVEPI, HSP90AB1, and TTLL11 genes. Conclusions: This WGS study identified multiple predominantly novel understudied genes associated with IVIG response. These data can serve to inform regarding pathogenesis of KD, as well as lay ground work for developing treatment response predictors.


Asunto(s)
Síndrome Mucocutáneo Linfonodular , Niño , Humanos , Síndrome Mucocutáneo Linfonodular/tratamiento farmacológico , Síndrome Mucocutáneo Linfonodular/genética , Inmunoglobulinas Intravenosas/uso terapéutico , Farmacogenética , Intrones , Exones , Proteína Fosfatasa 2
20.
Front Genet ; 14: 1278215, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162683

RESUMEN

Introduction: Apparent treatment-resistant hypertension (aTRH) is characterized by the use of four or more antihypertensive (AHT) classes to achieve blood pressure (BP) control. In the current study, we conducted single-variant and gene-based analyses of aTRH among individuals from 12 Trans-Omics for Precision Medicine cohorts with whole-genome sequencing data. Methods: Cases were defined as individuals treated for hypertension (HTN) taking three different AHT classes, with average systolic BP ≥ 140 or diastolic BP ≥ 90 mmHg, or four or more medications regardless of BP (n = 1,705). A normotensive control group was defined as individuals with BP < 140/90 mmHg (n = 22,079), not on AHT medication. A second control group comprised individuals who were treatment responsive on one AHT medication with BP < 140/ 90 mmHg (n = 5,424). Logistic regression with kinship adjustment using the Scalable and Accurate Implementation of Generalized mixed models (SAIGE) was performed, adjusting for age, sex, and genetic ancestry. We assessed variants using SKAT-O in rare-variant analyses. Single-variant and gene-based tests were conducted in a pooled multi-ethnicity stratum, as well as self-reported ethnic/racial strata (European and African American). Results: One variant in the known HTN locus, KCNK3, was a top finding in the multi-ethnic analysis (p = 8.23E-07) for the normotensive control group [rs12476527, odds ratio (95% confidence interval) = 0.80 (0.74-0.88)]. This variant was replicated in the Vanderbilt University Medical Center's DNA repository data. Aggregate gene-based signals included the genes AGTPBP, MYL4, PDCD4, BBS9, ERG, and IER3. Discussion: Additional work validating these loci in larger, more diverse populations, is warranted to determine whether these regions influence the pathobiology of aTRH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA