Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
RNA Biol ; 17(1): 62-74, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31559909

RESUMEN

Neuronal microexons represent the most highly conserved class of alternative splicing events and their timed expression shapes neuronal biology, including neuronal commitment and differentiation. The six-nt microexon 34' is included in the neuronal form of TAF1 mRNA, which encodes the largest subunit of the basal transcription factor TFIID. In this study, we investigate the tissue distribution of TAF1-34' mRNA and protein and the mechanism responsible for its neuronal-specific splicing. Using isoform-specific RNA probes and antibodies, we observe that canonical TAF1 and TAF1-34' have different distributions in the brain, which distinguish proliferating from post-mitotic neurons. Knockdown and ectopic expression experiments demonstrate that the neuronal-specific splicing factor SRRM4/nSR100 promotes the inclusion of microexon 34' into TAF1 mRNA, through the recognition of UGC sequences in the poly-pyrimidine tract upstream of the regulated microexon. These results show that SRRM4 regulates temporal and spatial expression of alternative TAF1 mRNAs to generate a neuronal-specific TFIID complex.


Asunto(s)
Exones , Regulación de la Expresión Génica , Histona Acetiltransferasas/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Empalme del ARN , ARN Mensajero/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Animales , Encéfalo/metabolismo , Diferenciación Celular , Inmunohistoquímica , Ratones , Neurogénesis/genética , Neuronas/citología
2.
NPJ Precis Oncol ; 8(1): 19, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273014

RESUMEN

Recent advances in the genomics of glioblastoma (GBM) led to the introduction of molecular neuropathology but failed to translate into treatment improvement. This is largely attributed to the genetic and phenotypic heterogeneity of GBM, which are considered the major obstacle to GBM therapy. Here, we use advanced human GBM-like organoid (LEGO: Laboratory Engineered Glioblastoma-like Organoid) models and provide an unprecedented comprehensive characterization of LEGO models using single-cell transcriptome, DNA methylome, metabolome, lipidome, proteome, and phospho-proteome analysis. We discovered that genetic heterogeneity dictates functional heterogeneity across molecular layers and demonstrates that NF1 mutation drives mesenchymal signature. Most importantly, we found that glycerol lipid reprogramming is a hallmark of GBM, and several targets and drugs were discovered along this line. We also provide a genotype-based drug reference map using LEGO-based drug screen. This study provides new human GBM models and a research path toward effective GBM therapy.

3.
Brain Commun ; 3(4): fcab253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746789

RESUMEN

X-linked dystonia-parkinsonism (XDP) is a monogenic neurodegenerative disorder of the basal ganglia, which presents as a combination of hyperkinetic movements and parkinsonian features. The underlying genetic mechanism involves the insertion of a SINE-VNTR-Alu retrotransposon within the TAF1 gene. Interestingly, alterations of TAF1 have been involved in multiple neurological diseases. In XDP, the SINE-VNTR-Alu insertion in TAF1 has been proposed to result in alternative splicing defects, including the decreased incorporation of a neuron-specific microexon annotated as 34'. This mechanism has become controversial as recent studies failed to provide support. In order to resolve this conundrum, we examined the alternative splicing patterns of TAF1 mRNAs in XDP and control brains. The impact of the disease-associated SINE-VNTR-Alu on alternative splicing of microexon 34' was further investigated in cellular assays. Subsequently, microexon 34' incorporation was explored by RT-PCR and Nanopore long-read sequencing of TAF1 mRNAs from XDP and control brains tissues. Using cell-based splicing assays, we demonstrate that presence of the disease-associated SINE-VNTR-Alu does not affect the inclusion of microexon 34'. In addition, we show that (1) microexon 34'-containing TAF1 mRNAs are detected at similar levels in XDP as in controls and that (2) the architecture of TAF1 transcripts is remarkably similar between XDP and controls brains. These results indicate that microexon 34' incorporation into TAF1 mRNA is not affected in XDP brains. Our findings shift the current paradigm of XDP by discounting alternative splicing of TAF1 microexon 34' as the molecular basis for this disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA