Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(17): 4405-4410, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29581307

RESUMEN

N-terminal (Nt) acetylation is a major protein modification catalyzed by N-terminal acetyltransferases (NATs). Methionine acidic N termini, including actin, are cotranslationally Nt acetylated by NatB in all eukaryotes, but animal actins containing acidic N termini, are additionally posttranslationally Nt acetylated by NAA80. Actin Nt acetylation was found to regulate cytoskeletal dynamics and motility, thus making NAA80 a potential target for cell migration regulation. In this work, we developed potent and selective bisubstrate inhibitors for NAA80 and determined the crystal structure of NAA80 in complex with such an inhibitor, revealing that NAA80 adopts a fold similar to other NAT enzymes but with a more open substrate binding region. Furthermore, in contrast to most other NATs, the substrate specificity of NAA80 is mainly derived through interactions between the enzyme and the acidic amino acids at positions 2 and 3 of the actin substrate and not residues 1 and 2. A yeast model revealed that ectopic expression of NAA80 in a strain lacking NatB activity partially restored Nt acetylation of NatB substrates, including yeast actin. Thus, NAA80 holds intrinsic capacity to posttranslationally Nt acetylate NatB-type substrates in vivo. In sum, the presence of a dominant cotranslational NatB in all eukaryotes, the specific posttranslational actin methionine removal in animals, and finally, the unique structural features of NAA80 leave only the processed actins as in vivo substrates of NAA80. Together, this study reveals the molecular and cellular basis of NAA80 Nt acetylation and provides a scaffold for development of inhibitors for the regulation of cytoskeletal properties.


Asunto(s)
Acetiltransferasas/química , Inhibidores Enzimáticos/química , Acetiltransferasas N-Terminal/química , Actinas/química , Cristalografía por Rayos X , Humanos , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad
2.
Hum Mol Genet ; 24(7): 1956-76, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25489052

RESUMEN

The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Proteínas/metabolismo , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencias de Aminoácidos , Dominio Catalítico , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Masculino , Mutación , Linaje , Proteínas/química , Proteínas/genética
3.
Mol Cell Proteomics ; 13(8): 2031-41, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24408909

RESUMEN

N-terminal acetylation (Nt-acetylation) occurs on the majority of eukaryotic proteins and is catalyzed by N-terminal acetyltransferases (NATs). Nt-acetylation is increasingly recognized as a vital modification with functional implications ranging from protein degradation to protein localization. Although early genetic studies in yeast demonstrated that NAT-deletion strains displayed a variety of phenotypes, only recently, the first human genetic disorder caused by a mutation in a NAT gene was reported; boys diagnosed with the X-linked Ogden syndrome harbor a p.Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of the NatA complex, and suffer from global developmental delays and lethality during infancy. Here, we describe a Saccharomyces cerevisiae model developed by introducing the human wild-type or mutant NatA complex into yeast lacking NatA (NatA-Δ). The wild-type human NatA complex phenotypically complemented the NatA-Δ strain, whereas only a partial rescue was observed for the Ogden mutant NatA complex suggesting that hNaa10 S37P is only partially functional in vivo. Immunoprecipitation experiments revealed a reduced subunit complexation for the mutant hNatA S37P next to a reduced in vitro catalytic activity. We performed quantitative Nt-acetylome analyses on a control yeast strain (yNatA), a yeast NatA deletion strain (yNatA-Δ), a yeast NatA deletion strain expressing wild-type human NatA (hNatA), and a yeast NatA deletion strain expressing mutant human NatA (hNatA S37P). Interestingly, a generally reduced degree of Nt-acetylation was observed among a large group of NatA substrates in the yeast expressing mutant hNatA as compared with yeast expressing wild-type hNatA. Combined, these data provide strong support for the functional impairment of hNaa10 S37P in vivo and suggest that reduced Nt-acetylation of one or more target substrates contributes to the pathogenesis of the Ogden syndrome. Comparative analysis between human and yeast NatA also provided new insights into the co-evolution of the NatA complexes and their substrates. For instance, (Met-)Ala- N termini are more prevalent in the human proteome as compared with the yeast proteome, and hNatA displays a preference toward these N termini as compared with yNatA.


Asunto(s)
Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/metabolismo , Acetiltransferasas N-Terminal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Acetilación , Sustitución de Aminoácidos , Humanos , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Acetiltransferasas N-Terminal/genética , Fenotipo , Prolina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Especificidad de la Especie
4.
Mol Cell Proteomics ; 12(1): 42-54, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23043182

RESUMEN

N-terminal acetylation (Nt-acetylation) is a highly abundant protein modification in eukaryotes catalyzed by N-terminal acetyltransferases (NATs), which transfer an acetyl group from acetyl coenzyme A to the alpha amino group of a nascent polypeptide. Nt-acetylation has emerged as an important protein modifier, steering protein degradation, protein complex formation and protein localization. Very recently, it was reported that some human proteins could carry a propionyl group at their N-terminus. Here, we investigated the generality of N-terminal propionylation by analyzing its proteome-wide occurrence in yeast and we identified 10 unique in vivo Nt-propionylated N-termini. Furthermore, by performing differential N-terminome analysis of a control yeast strain (yNatA), a yeast NatA deletion strain (yNatAΔ) or a yeast NatA deletion strain expressing human NatA (hNatA), we were able to demonstrate that in vivo Nt-propionylation of several proteins, displaying a NatA type substrate specificity profile, depended on the presence of either yeast or human NatA. Furthermore, in vitro Nt-propionylation assays using synthetic peptides, propionyl coenzyme A, and either purified human NATs or immunoprecipitated human NatA, clearly demonstrated that NATs are Nt-propionyltransferases (NPTs) per se. We here demonstrate for the first time that Nt-propionylation can occur in yeast and thus is an evolutionarily conserved process, and that the NATs are multifunctional enzymes acting as NPTs in vivo and in vitro, in addition to their main role as NATs, and their potential function as lysine acetyltransferases (KATs) and noncatalytic regulators.


Asunto(s)
Acetiltransferasas/metabolismo , Acetiltransferasas N-Terminal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Acetiltransferasas/genética , Aminoácidos/metabolismo , Línea Celular , Humanos , Lisina/metabolismo , Acetiltransferasas N-Terminal/genética , Procesamiento Proteico-Postraduccional , Proteoma , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
5.
Front Chem ; 11: 1202501, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408560

RESUMEN

Acetylation of protein N-termini is one of the most common protein modifications in the eukaryotic cell and is catalyzed by the N-terminal acetyltransferase family of enzymes. The N-terminal acetyltransferase NAA80 is expressed in the animal kingdom and was recently found to specifically N-terminally acetylate actin, which is the main component of the microfilament system. This unique animal cell actin processing is essential for the maintenance of cell integrity and motility. Actin is the only known substrate of NAA80, thus potent inhibitors of NAA80 could prove as important tool compounds to study the crucial roles of actin and how NAA80 regulates this by N-terminal acetylation. Herein we describe a systematic study toward optimizing the peptide part of a bisubstrate-based NAA80 inhibitor comprising of coenzyme A conjugated onto the N-terminus of a tetrapeptide amide via an acetyl linker. By testing various combinations of Asp and Glu which are found at the N-termini of ß- and γ-actin, respectively, CoA-Ac-EDDI-NH2 was identified as the best inhibitor with an IC50 value of 120 nM.

6.
Sci Rep ; 5: 16022, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26522270

RESUMEN

We report two brothers from a non-consanguineous Irish family presenting with a novel syndrome characterised by intellectual disability, facial dysmorphism, scoliosis and long QT. Their mother has a milder phenotype including long QT. X-linked inheritance was suspected. Whole exome sequencing identified a novel missense variant (c.128 A > C; p.Tyr43Ser) in NAA10 (X chromosome) as the cause of the family's disorder. Sanger sequencing confirmed that the mutation arose de novo in the carrier mother. NAA10 encodes the catalytic subunit of the major human N-terminal acetylation complex NatA. In vitro assays for the p.Tyr43Ser mutant enzyme showed a significant decrease in catalytic activity and reduced stability compared to wild-type Naa10 protein. NAA10 has previously been associated with Ogden syndrome, Lenz microphthalmia syndrome and non-syndromic developmental delay. Our findings expand the clinical spectrum of NAA10 and suggest that the proposed correlation between mutant Naa10 enzyme activity and phenotype severity is more complex than anticipated; the p.Tyr43Ser mutant enzyme has less catalytic activity than the p.Ser37Pro mutant associated with lethal Ogden syndrome but results in a milder phenotype. Importantly, we highlight the need for cardiac assessment in males and females with NAA10 variants as both patients and carriers can have long QT.


Asunto(s)
Síndrome de QT Prolongado/genética , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Línea Celular Tumoral , Exoma/genética , Femenino , Células HeLa , Humanos , Discapacidad Intelectual/genética , Masculino , Acetiltransferasas N-Terminal/genética , Fenotipo
7.
Eur J Hum Genet ; 23(5): 602-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25099252

RESUMEN

Recent studies revealed the power of whole-exome sequencing to identify mutations in sporadic cases with non-syndromic intellectual disability. We now identified de novo missense variants in NAA10 in two unrelated individuals, a boy and a girl, with severe global developmental delay but without any major dysmorphism by trio whole-exome sequencing. Both de novo variants were predicted to be deleterious, and we excluded other variants in this gene. This X-linked gene encodes N-alpha-acetyltransferase 10, the catalytic subunit of the NatA complex involved in multiple cellular processes. A single hypomorphic missense variant p.(Ser37Pro) was previously associated with Ogden syndrome in eight affected males from two different families. This rare disorder is characterized by a highly recognizable phenotype, global developmental delay and results in death during infancy. In an attempt to explain the discrepant phenotype, we used in vitro N-terminal acetylation assays which suggested that the severity of the phenotype correlates with the remaining catalytic activity. The variant in the Ogden syndrome patients exhibited a lower activity than the one seen in the boy with intellectual disability, while the variant in the girl was the most severe exhibiting only residual activity in the acetylation assays used. We propose that N-terminal acetyltransferase deficiency is clinically heterogeneous with the overall catalytic activity determining the phenotypic severity.


Asunto(s)
Discapacidades del Desarrollo/genética , Estudios de Asociación Genética , Mutación Missense , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Secuencia de Aminoácidos , Niño , Preescolar , Análisis Mutacional de ADN , Discapacidades del Desarrollo/diagnóstico , Exones , Facies , Femenino , Sitios Genéticos , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Acetiltransferasa A N-Terminal/química , Acetiltransferasa E N-Terminal/química , Linaje , Fenotipo , Conformación Proteica , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA