Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Diabetes ; 53(6): 1445-51, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15161747

RESUMEN

Mice that lack acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in mammalian triglyceride synthesis, have decreased adiposity and increased insulin sensitivity. Here we show that insulin-stimulated glucose transport is increased in the skeletal muscle and white adipose tissue (WAT) of chow-fed DGAT1-deficient mice. This increase in glucose transport correlated with enhanced insulin-stimulated activities of phosphatidylinositol 3-kinase, protein kinase B (or Akt), and protein kinase Clambda (PKC-lambda), three key molecules in the insulin-signaling pathway, and was associated with decreased levels of serine-phosphorylated insulin receptor substrate 1 (IRS-1), a molecule implicated in insulin resistance. Similar findings in insulin signaling were also observed in DGAT1-deficient mice fed a high-fat diet. Interestingly, the increased PKC-lambda activity and decreased serine phosphorylation of IRS-1 were observed in chow-fed wild-type mice transplanted with DGAT1-deficient WAT, consistent with our previous finding that transplantation of DGAT1-deficient WAT enhances glucose disposal in wild-type recipient mice. Our findings demonstrate that DGAT1 deficiency enhances insulin signaling in the skeletal muscle and WAT, in part through altered expression of adipocyte-derived factors that modulate insulin signaling in peripheral tissues.


Asunto(s)
Aciltransferasas/deficiencia , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal , Aciltransferasas/metabolismo , Tejido Adiposo/trasplante , Animales , Diacilglicerol O-Acetiltransferasa , Grasas de la Dieta/administración & dosificación , Relación Dosis-Respuesta a Droga , Glucosa/metabolismo , Insulina/farmacología , Proteínas Sustrato del Receptor de Insulina , Isoenzimas/metabolismo , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Serina/metabolismo
2.
Diabetes ; 52(8): 1926-34, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12882907

RESUMEN

Insulin resistance in type 2 diabetes is partly due to impaired glucose transport in skeletal muscle. Atypical protein kinase C (aPKC) and protein kinase B (PKB), operating downstream of phosphatidylinositol (PI) 3-kinase and its lipid product, PI-3,4,5-(PO(4))(3) (PIP(3)), apparently mediate insulin effects on glucose transport. We examined these signaling factors during hyperinsulinemic-euglycemic clamp studies in nondiabetic subjects, subjects with impaired glucose tolerance (IGT), and type 2 diabetic subjects. In nondiabetic control subjects, insulin provoked twofold increases in muscle aPKC activity. In both IGT and diabetes, aPKC activation was markedly (70-80%) diminished, most likely reflecting impaired activation of insulin receptor substrate (IRS)-1-dependent PI 3-kinase and decreased ability of PIP(3) to directly activate aPKCs; additionally, muscle PKC-zeta levels were diminished by 40%. PKB activation was diminished in patients with IGT but not significantly in diabetic patients. The insulin sensitizer rosiglitazone improved insulin-stimulated IRS-1-dependent PI 3-kinase and aPKC activation, as well as glucose disposal rates. Bicycle exercise, which activates aPKCs and stimulates glucose transport independently of PI 3-kinase, activated aPKCs comparably to insulin in nondiabetic subjects and better than insulin in diabetic patients. Defective aPKC activation contributes to skeletal muscle insulin resistance in IGT and type 2 diabetes, rosiglitazone improves insulin-stimulated aPKC activation, and exercise directly activates aPKCs in diabetic muscle.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/administración & dosificación , Proteínas Musculares , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas , Tiazoles/administración & dosificación , Tiazolidinedionas , Adulto , Glucemia/metabolismo , Ejercicio Físico/fisiología , Ácidos Grasos no Esterificados/sangre , Femenino , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4 , Humanos , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina/fisiología , Isoenzimas/metabolismo , Masculino , Persona de Mediana Edad , Proteínas de Transporte de Monosacáridos/metabolismo , Músculo Esquelético/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Rosiglitazona , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
3.
Diabetes ; 51(10): 2936-43, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12351430

RESUMEN

Rhesus monkeys frequently develop obesity and insulin resistance followed by type 2 diabetes when allowed free access to chow. This insulin resistance is partly due to defective glucose transport into skeletal muscle. In this study, we examined signaling factors required for insulin-stimulated glucose transport in muscle biopsies taken during euglycemic-hyperinsulinemic clamps in nondiabetic, obese prediabetic, and diabetic monkeys. Insulin increased activities of insulin receptor substrate (IRS)-1-dependent phosphatidylinositol (PI) 3-kinase and its downstream effectors, atypical protein kinase Cs (aPKCs) (zeta/lambda/iota) and protein kinase B (PKB) in muscles of nondiabetic monkeys. Insulin-induced increases in glucose disposal and aPKC activity diminished progressively in prediabetic and diabetic monkeys. Decreases in aPKC activation appeared to be at least partly due to diminished activation of IRS-1-dependent PI 3-kinase, but direct activation of aPKCs by the PI 3-kinase lipid product PI-3,4,5-(PO(4))(3) was also diminished. In conjunction with aPKCs, PKB activation was diminished in prediabetic muscle but, differently from aPKCs, seemed to partially improve in diabetic muscle. Interestingly, calorie restriction and avoidance of obesity largely prevented development of defects in glucose disposal and aPKC activation. Our findings suggest that defective activation of aPKCs contributes importantly to obesity-dependent development of skeletal muscle insulin resistance in prediabetic and type 2 diabetic monkeys.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/enzimología , Obesidad/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas , Animales , Ingestión de Energía/fisiología , Activación Enzimática/fisiología , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Insulina/metabolismo , Insulina/farmacología , Isoenzimas/metabolismo , Macaca mulatta , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt
4.
Exp Biol Med (Maywood) ; 230(9): 593-605, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16179727

RESUMEN

Glucose transport into muscle is the initial process in glucose clearance and is uniformly defective in insulin-resistant conditions of obesity, metabolic syndrome, and Type II diabetes mellitus. Insulin regulates glucose transport by activating insulin receptor substrate-1 (IRS-1)-dependent phosphatidylinositol 3-kinase (PI3K) which, via increases in PI-3,4,5-triphosphate (PIP(3)), activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). Here, we review (i) the evidence that both aPKC and PKB are required for insulin-stimulated glucose transport, (ii) abnormalities in muscle aPKC/PKB activation seen in obesity and diabetes, and (iii) mechanisms for impaired aPKC activation in insulin-resistant conditions. In most cases, defective muscle aPKC/PKB activation reflects both impaired activation of IRS-1/PI3K, the upstream activator of aPKC and PKB in muscle and, in the case of aPKC, poor responsiveness to PIP(3), the lipid product of PI3K. Interestingly, insulin-sensitizing agents (e.g., thiazolidinediones, metformin) improve aPKC activation by insulin in vivo and PIP3 in vitro, most likely by activating 5'-adenosine monophosphate-activated protein kinase, which favorably alters intracellular lipid metabolism. Differently from muscle, aPKC activation in the liver is dependent on IRS-2/PI3K rather than IRS-1/PI3K and, surprisingly, the activation of IRS-2/PI3K and aPKC is conserved in high-fat feeding, obesity, and diabetes. This conservation has important implications, as continued activation of hepatic aPKC in hyperinsulinemic states may increase the expression of sterol regulatory element binding protein-1c, which controls genes that increase hepatic lipid synthesis. On the other hand, the defective activation of IRS-1/PI3K and PKB, as seen in diabetic liver, undoubtedly and importantly contributes to increases in hepatic glucose output. Thus, the divergent activation of aPKC and PKB in the liver may explain why some hepatic actions of insulin (e.g., aPKC-dependent lipid synthesis) are increased while other actions (e.g., PKB-dependent glucose metabolism) are diminished. This may explain the paradox that the liver secretes excessive amounts of both very low density lipoprotein triglycerides and glucose in Type II diabetes. Previous reviews from our laboratory that have appeared in the Proceedings have provided essentials on phospholipid-signaling mechanisms used by insulin to activate several protein kinases that seem to be important in mediating the metabolic effects of insulin. During recent years, there have been many new advances in our understanding of how these lipid-dependent protein kinases function during insulin action and why they fail to function in states of insulin resistance. The present review will attempt to summarize what we believe are some of the more important advances.


Asunto(s)
Diabetes Mellitus Tipo 2/enzimología , Insulina/fisiología , Obesidad/enzimología , Proteína Quinasa C/metabolismo , Animales , Transporte Biológico , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Transducción de Señal
5.
Mol Endocrinol ; 18(10): 2513-21, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15256535

RESUMEN

Insulin receptor substrates (IRSs) 1 and 2 are postulated to control the activation of phosphatidylinositol 3-kinase (PI3K)-dependent signaling factors, namely, atypical protein kinase C (aPKC) and protein kinase B (PKB)/Akt, which mediate metabolic effects of insulin. However, it is uncertain whether aPKC and PKB are activated together or differentially in response to IRS-1 and IRS-2 activation in insulin-sensitive tissues. Presently, we examined insulin activation of aPKC and PKB in vastus lateralis muscle, adipocytes, and liver in wild-type and IRS-1 knockout mice, and observed striking tissue-specific differences. In muscle of IRS-1 knockout mice, the activation of both aPKC and PKB was markedly diminished. In marked contrast, only aPKC activation was diminished in adipocytes, and only PKB activation was diminished in liver. These results suggest that IRS-1 is required for: 1) activation of both aPKC and PKB in muscle; 2) aPKC, but not PKB, activation in adipocytes; and 3) PKB, but not aPKC, activation in liver. Presumably, IRS-2 or other PI3K activators account for the normal activation of aPKC in liver and PKB in adipocytes of IRS-1 knockout mice. These complexities in aPKC and PKB activation may be relevant to metabolic abnormalities seen in tissues in which IRS-1 or IRS-2 is specifically or predominantly down-regulated.


Asunto(s)
Fosfoproteínas/fisiología , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Adipocitos/enzimología , Adipocitos/fisiología , Animales , Activación Enzimática , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular , Hígado/enzimología , Hígado/fisiología , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/enzimología , Músculo Esquelético/fisiología , Fosfoproteínas/genética , Proteínas Proto-Oncogénicas c-akt , Eliminación de Secuencia , Transducción de Señal
6.
Mol Endocrinol ; 18(2): 373-83, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14615604

RESUMEN

Atypical protein kinase C (aPKC) isoforms have been suggested to mediate insulin effects on glucose transport in adipocytes and other cells. To more rigorously test this hypothesis, we generated mouse embryonic stem (ES) cells and ES-derived adipocytes in which both aPKC-lambda alleles were knocked out by recombinant methods. Insulin activated PKC-lambda and stimulated glucose transport in wild-type (WT) PKC-lambda(+/+), but not in knockout PKC-lambda(-/-), ES cells. However, insulin-stimulated glucose transport was rescued by expression of WT PKC-lambda in PKC-lambda(-/-) ES cells. Surprisingly, insulin-induced increases in both PKC-lambda activity and glucose transport were dependent on activation of proline-rich tyrosine protein kinase 2, the ERK pathway, and phospholipase D (PLD) but were independent of phosphatidylinositol 3-kinase (PI3K) in PKC-lambda(+/+) ES cells. Interestingly, this dependency was completely reversed after differentiation of ES cells to adipocytes, i.e. insulin effects on PKC-lambda and glucose transport were dependent on PI3K, rather than proline-rich tyrosine protein kinase 2/ERK/PLD. As in ES cells, insulin effects on glucose transport were absent in PKC-lambda(-/-) adipocytes but were rescued by expression of WT PKC-lambda in these adipocytes. Our findings suggest that insulin activates aPKCs and glucose transport in ES cells by a newly recognized PI3K-independent ERK/PLD-dependent pathway and provide a compelling line of evidence suggesting that aPKCs are required for insulin-stimulated glucose transport, regardless of whether aPKCs are activated by PI3K-dependent or PI3K-independent mechanisms.


Asunto(s)
Adipocitos/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Proteína Quinasa C/genética , Células Madre/metabolismo , Adipocitos/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Desoxiglucosa/farmacocinética , Embrión de Mamíferos/citología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Quinasa 2 de Adhesión Focal , Transportador de Glucosa de Tipo 1 , Insulina/farmacología , Isoenzimas , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasa D/antagonistas & inhibidores , Fosfolipasa D/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Tirosina Quinasas/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal , Células Madre/efectos de los fármacos
7.
Mol Endocrinol ; 16(4): 847-58, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11923480

RESUMEN

Insulin stimulates glucose transport and certain other metabolic processes by activating atypical PKC isoforms (lambda, zeta, iota) and protein kinase B (PKB) through increases in D3-polyphosphoinositides derived from the action of PI3K. The role of diacylglycerol-sensitive PKC isoforms is less clear as they have been suggested to be both activated by insulin and yet inhibit insulin signaling to PI3K. Presently, we found that insulin signaling to insulin receptor substrate 1-dependent PI3K, PKB, and PKC lambda, and downstream processes, glucose transport and activation of ERK, were enhanced in skeletal muscles and adipocytes of mice in which the ubiquitous conventional diacylglycerol-sensitive PKC isoform, PKC alpha, was knocked out by homologous recombination. On the other hand, insulin provoked wortmannin-insensitive increases in immunoprecipitable PKC alpha activity in adipocytes and skeletal muscles of wild-type mice and rats. We conclude that 1) PKC alpha is not required for insulin-stimulated glucose transport, and 2) PKC alpha is activated by insulin at least partly independently of PI3K, and largely serves as a physiological feedback inhibitor of insulin signaling to the insulin receptor substrate 1/PI3K/PKB/PKC lambda/zeta/iota complex and dependent metabolic processes.


Asunto(s)
Insulina/fisiología , Isoenzimas/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Proteína Quinasa C/fisiología , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Adipocitos/metabolismo , Animales , Transporte Biológico Activo , Glucemia/metabolismo , Activación Enzimática , Isoenzimas/genética , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Músculo Esquelético/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteína Quinasa C-alfa , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Endocrinology ; 144(3): 947-54, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12586772

RESUMEN

UNLABELLED: Insulin-stimulated glucose transport in skeletal muscle is thought to be effected at least partly through atypical protein kinase C isoforms (aPKCs) operating downstream of phosphatidylinositol (PI) 3-kinase and 3-phosphoinositide-dependent protein kinase-1 (PDK-1). However, relatively little is known about the activation of aPKCs in physiological conditions or insulin-resistant states. Presently, we studied aPKC activation in vastus lateralis muscles of normal chow-fed and high-fat-fed rats and after streptozotocin (STZ)-induced diabetes. In normal chow-fed rats, dose-dependent increases in aPKC activity approached maximal levels after 15-30 min of stimulation by relatively high and lower, presumably more physiological, insulin concentrations, achieved by im insulin or ip glucose administration. Insulin-induced activation of aPKCs was impaired in both high-fat-fed and STZ-diabetic rats, but, surprisingly, IRS-1-dependent and IRS-2-dependent PI 3-kinase activation was not appreciably compromised. Most interestingly, direct in vitro activation of aPKCs by PI-3,4,5-(PO(4))(3), the lipid product of PI 3-kinase, was impaired in both high-fat-fed and STZ-diabetic rats. Defects in activation of aPKCs by insulin and PI-3,4,5-(PO(4))(3) could not be explained by diminished PDK-1-dependent phosphorylation of threonine-410 in the PKC-zeta activation loop, as this phosphorylation was increased even in the absence of insulin treatment in high-fat-fed rats. CONCLUSIONS: 1) muscle aPKCs are activated at relatively low, presumably physiological, as well as higher supraphysiological, insulin concentrations; 2) aPKC activation is defective in muscles of high-fat-fed and STZ-diabetic rats; and 3) defective aPKC activation in these states is at least partly due to impaired responsiveness to PI-3,4,5-(PO(4))(3), apparently at activation steps distal to PDK-1-dependent loop phosphorylation.


Asunto(s)
Diabetes Mellitus Experimental/enzimología , Insulina/farmacología , Músculo Esquelético/enzimología , Fosfatos de Fosfatidilinositol/farmacología , Proteína Quinasa C/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Grasas de la Dieta/administración & dosificación , Activación Enzimática/efectos de los fármacos , Glucosa/administración & dosificación , Isoenzimas , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley
9.
Endocrinology ; 143(5): 1705-16, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11956152

RESUMEN

The thiazolidenedione, rosiglitazone, increases basal and/or insulin-stimulated glucose transport in various cell types by diverse but uncertain mechanisms that may involve insulin receptor substrate (IRS)-1-dependent PI3K. Presently, in 3T3/L1 adipocytes, rosiglitazone induced sizable increases in basal glucose transport that were: dependent on PI3K, 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and PKC-lambda; accompanied by increases in tyrosine phosphorylation of Cbl and Cbl-dependent increases in PI3K and PKC-lambda activity; but not accompanied by increases in IRS-1/2-dependent PI3K or protein kinase B activity. Additionally, rosiglitazone increased IRS-1 and IRS-2 levels, thereby enhancing insulin effects on IRS-1- and IRS-2-dependent PI3K and downstream signaling factors PKC-lambda and protein kinase B. Our findings suggest that Cbl participates in mediating effects of rosiglitazone on PI3K, PDK-1, and PKC-lambda and the glucose transport system and that this Cbl-dependent pathway complements the IRS-1 and IRS-2 pathways for activating PI3K, PDK-1, and PKC-lambda during combined actions of rosiglitazone and insulin in 3T3/L1 cells.


Asunto(s)
Adipocitos/metabolismo , Glucosa/metabolismo , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfoproteínas/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas , Tiazoles/farmacología , Tiazolidinedionas , Células 3T3 , Adipocitos/efectos de los fármacos , Adipocitos/enzimología , Animales , Antimetabolitos , Transporte Biológico Activo/efectos de los fármacos , Western Blotting , Desoxiglucosa , Activación Enzimática/efectos de los fármacos , Insulina/farmacología , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular , Isoenzimas , Ratones , Fosfoproteínas/genética , Proteína Quinasa C/biosíntesis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Rosiglitazona , Transducción de Señal/efectos de los fármacos
10.
J Clin Endocrinol Metab ; 87(2): 716-23, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11836310

RESUMEN

Insulin-stimulated glucose transport is impaired in the early phases of type 2 diabetes mellitus. Studies in rodent cells suggest that atypical PKC (aPKC) isoforms (zeta, lamda, and iota) and PKB, and their upstream activators, PI3K and 3-phosphoinositide-dependent protein kinase-1 (PDK-1), play important roles in insulin-stimulated glucose transport. However, there is no information on requirements for aPKCs, PKB, or PDK-1 during insulin action in human cell types. Presently, by using preadipocyte-derived adipocytes, we were able to employ adenoviral gene transfer methods to critically examine these requirements in a human cell type. These adipocytes were found to contain PKC-zeta, rather than PKC-lamda/iota, as their major aPKC. Expression of kinase-inactive forms of PDK-1, PKC-zeta, and PKC-lamda (which functions interchangeably with PKC-zeta) as well as chemical inhibitors of PI 3-kinase and PKC-zeta/lamda, wortmannin and the cell-permeable myristoylated PKC-zeta pseudosubstrate, respectively, effectively inhibited insulin-stimulated glucose transport. In contrast, expression of a kinase-inactive, activation-resistant, triple alanine mutant form of PKB-alpha had little or no effect, and expression of wild-type and constitutively active PKC-zeta or PKC-lamda increased glucose transport. Our findings provide convincing evidence that aPKCs and upstream activators, PI 3-kinase and PDK-1, play important roles in insulin-stimulated glucose transport in preadipocyte-derived human adipocytes.


Asunto(s)
Adipocitos/metabolismo , Glucosa/metabolismo , Insulina/farmacología , Proteína Quinasa C/fisiología , Células Madre/metabolismo , Células 3T3 , Adulto , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Femenino , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo
11.
Diabetes ; 63(8): 2690-701, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24705403

RESUMEN

Initiating mechanisms that impair gluconeogenic enzymes and spare lipogenic enzymes in diet-induced obesity (DIO) are obscure. Here, we examined insulin signaling to Akt and atypical protein kinase C (aPKC) in liver and muscle and hepatic enzyme expression in mice consuming a moderate high-fat (HF) diet. In HF diet-fed mice, resting/basal and insulin-stimulated Akt and aPKC activities were diminished in muscle, but in liver, these activities were elevated basally and were increased by insulin to normal levels. Despite elevated hepatic Akt activity, FoxO1 phosphorylation, which diminishes gluconeogenesis, was impaired; in contrast, Akt-dependent phosphorylation of glycogenic GSK3ß and lipogenic mTOR was elevated. Diminished Akt-dependent FoxO1 phosphorylation was associated with reduced Akt activity associated with scaffold protein WD40/Propeller/FYVE (WD40/ProF), which reportedly facilitates FoxO1 phosphorylation. In contrast, aPKC activity associated with WD40/ProF was increased. Moreover, inhibition of hepatic aPKC reduced its association with WD40/ProF, restored WD40/ProF-associated Akt activity, restored FoxO1 phosphorylation, and corrected excessive expression of hepatic gluconeogenic and lipogenic enzymes. Additionally, Akt and aPKC activities in muscle improved, as did glucose intolerance, weight gain, hepatosteatosis, and hyperlipidemia. We conclude that Akt-dependent FoxO1 phosphorylation occurs on the WD/Propeller/FYVE scaffold in liver and is selectively inhibited in early DIO by diet-induced increases in activity of cocompartmentalized aPKC.


Asunto(s)
Proteínas Portadoras/metabolismo , Factores de Transcripción Forkhead/metabolismo , Hígado/metabolismo , Obesidad/inducido químicamente , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Alimentación Animal , Animales , Proteínas Portadoras/genética , Ceramidas/farmacología , Dieta Alta en Grasa/efectos adversos , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Insulina/genética , Insulina/metabolismo , Masculino , Ratones , Músculo Esquelético , Fosforilación , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
12.
Antioxid Redox Signal ; 14(2): 207-19, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20518698

RESUMEN

Obesity, the metabolic syndrome, and aging share several pathogenic features in both humans and non-human primates, including insulin resistance and inflammation. Since muscle and liver are considered key integrators of metabolism, we sought to determine in biopsies from lean and obese aging rhesus monkeys the nature of defects in insulin activation and, further, the potential for mitigation of such defects by an in vivo insulin sensitizer, rosiglitazone, and a thiazolidinedione activator of the peroxisome proliferator-activated receptor gamma. The peroxisome proliferator-activated receptor gamma agonist reduced hyperinsulinemia, improved insulin sensitivity, lowered plasma triglycerides and free fatty acids, and increased plasma adiponectin. In muscle of obese monkeys, previously shown to exhibit defective insulin signaling, the insulin sensitizer improved insulin activation of atypical protein kinase C (aPKC), the defective direct activation of aPKC by phosphatidylinositol (PI)-3,4,5-(PO4)3, and 5'-AMP-activated protein kinase and increased carnitine palmitoyltransferase-1 mRNA expression, but it did not improve insulin activation of insulin receptor substrate (IRS)-1-dependent PI 3-kinase (IRS-1/PI3K), protein kinase B, or glycogen synthase. We found that, although insulin signaling was impaired in muscle, insulin activation of IRS-1/PI3K, IRS-2/PI3K, protein kinase B, and aPKC was largely intact in liver and that rosiglitazone improved insulin signaling to aPKC in muscle by improving responsiveness to PI-3,4,5-(PO4)3.


Asunto(s)
Insulina/metabolismo , Hígado/metabolismo , Macaca mulatta/metabolismo , Músculo Liso Vascular/metabolismo , Obesidad/metabolismo , PPAR gamma/agonistas , Proteína Quinasa C/metabolismo , Animales , Insulina/farmacología , Masculino , PPAR gamma/metabolismo , Transducción de Señal
13.
J Lipid Res ; 50(6): 1133-45, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19202134

RESUMEN

Obesity is frequently associated with systemic insulin resistance, glucose intolerance, and hyperlipidemia. Impaired insulin action in muscle and paradoxical diet/insulin-dependent overproduction of hepatic lipids are important components of obesity, but their pathogenesis and inter-relationships between muscle and liver are uncertain. We studied two murine obesity models, moderate high-fat-feeding and heterozygous muscle-specific PKC-lambda knockout, in both of which insulin activation of atypical protein kinase C (aPKC) is impaired in muscle, but conserved in liver. In both models, activation of hepatic sterol receptor element binding protein-1c (SREBP-1c) and NFkappaB (nuclear factor-kappa B), major regulators of hepatic lipid synthesis and systemic insulin resistance, was chronically increased in the fed state. In support of a critical mediatory role of aPKC, in both models, inhibition of hepatic aPKC by adenovirally mediated expression of kinase-inactive aPKC markedly diminished diet/insulin-dependent activation of hepatic SREBP-1c and NFkappaB, and concomitantly improved hepatosteatosis, hypertriglyceridemia, hyperinsulinemia, and hyperglycemia. Moreover, in high-fat-fed mice, impaired insulin signaling to IRS-1-dependent phosphatidylinositol 3-kinase, PKB/Akt and aPKC in muscle and hyperinsulinemia were largely reversed. In obesity, conserved hepatic aPKC-dependent activation of SREBP-1c and NFkappaB contributes importantly to the development of hepatic lipogenesis, hyperlipidemia, and systemic insulin resistance. Accordingly, hepatic aPKC is a potential target for treating obesity-associated abnormalities.


Asunto(s)
Hígado/metabolismo , FN-kappa B/metabolismo , Obesidad/metabolismo , Proteína Quinasa C/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN/genética , Grasas de la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Quinasa I-kappa B/metabolismo , Insulina/sangre , Insulina/metabolismo , Resistencia a la Insulina , Isoenzimas/deficiencia , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Obesidad/etiología , Obesidad/genética , Proteína Quinasa C/deficiencia , Proteína Quinasa C/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
14.
J Biol Chem ; 281(25): 17466-17473, 2006 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-16644736

RESUMEN

The role of atypical protein kinase C (aPKC) in insulin-stimulated glucose transport in myocytes and adipocytes is controversial. Whereas studies involving the use of adenovirally mediated expression of kinase-inactive aPKC in L6 myocytes and 3T3/L1 and human adipocytes, and data from knock-out of aPKC in adipocytes derived from mouse embryonic stem cells and subsequently derived adipocytes, suggest that aPKCs are required for insulin-stimulated glucose transport, recent findings in studies of aPKC knockdown by small interfering RNA (RNAi) in 3T3/L1 adipocytes are conflicting. Moreover, there are no reports of aPKC knockdown in myocytes, wherein insulin effects on glucose transport are particularly relevant for understanding whole body glucose disposal. Presently, we exploited the fact that L6 myotubes and 3T3/L1 adipocytes have substantially different (30% nonhomology) major aPKCs, viz. PKC-zeta in L6 myotubes and PKC-lambda in 3T3/L1 adipocytes, that nevertheless can function interchangeably for glucose transport. Accordingly, in L6 myotubes, RNAi-targeting PKC-zeta, but not PKC-lambda, markedly depleted aPKC and concomitantly inhibited insulin-stimulated glucose transport; more importantly, these depleting/inhibitory effects were rescued by adenovirally mediated expression of PKC-lambda. Conversely, in 3T3/L1 adipocytes, RNAi constructs targeting PKC-lambda, but not PKC-zeta, markedly depleted aPKC and concomitantly inhibited insulin-stimulated glucose transport; here again, these depleting/inhibitory effects were rescued by adenovirally mediated expression of PKC-zeta. These findings in knockdown and, more convincingly, rescue studies, strongly support the hypothesis that aPKCs are required for insulin-stimulated glucose transport in myocytes and adipocytes.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Proteína Quinasa C/metabolismo , Interferencia de ARN , Adipocitos/metabolismo , Animales , Transporte Biológico , Activación Enzimática , Humanos , Ratones , Células Musculares/metabolismo , ARN Interferente Pequeño/metabolismo , Células Madre/metabolismo
15.
Biochemistry ; 43(49): 15494-502, 2004 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-15581361

RESUMEN

Cbl is phosphorylated by the insulin receptor and reportedly functions within the flotillin/CAP/Cbl/Crk/C3G/TC10 complex during insulin-stimulated glucose transport in 3T3/L1 adipocytes. Cbl, via pYXXM motifs at tyrosine-371 and tyrosine-731, also activates phosphatidylinositol (PI) 3-kinase, which is required to activate atypical protein kinase C (aPKC) and glucose transport during thiazolidinedione action in 3T3/L1 and human adipocytes [Miura et al. (2003) Biochemistry 42, 14335-14341]. Presently, we have examined the importance of Cbl in activating PI 3-kinase and aPKC during insulin action in 3T3/L1 adipocytes by expressing Y371F and Y731F Cbl mutants, which nullify pYXXM binding of Cbl to SH2 domains of downstream effectors. Interestingly, these mutants inhibited insulin-induced increases in (a) binding of Cbl to both Crk and the p85 subunit of PI 3-kinase, (b) activation of Cbl-dependent PI 3-kinase, (c) activation and translocation of aPKC to the plasma membrane, (d) translocation of Glut4 to the plasma membrane, (e) and glucose transport. Importantly, coexpression of wild-type Cbl reversed the inhibitory effects of Cbl mutants. In contrast to Cbl-dependent PI 3-kinase, Cbl mutants did not significantly inhibit the activation of PI 3-kinase by IRS-1, which is also required during insulin action. Our findings suggest that (a) Cbl uses pYXXM motifs to simultaneously activate PI 3-kinase and Crk/C3G/TC10 pathways and (b) Cbl, along with IRS-1, functions upstream of PI 3-kinase and aPKCs during insulin-stimulated glucose transport in 3T3/L1 adipocytes.


Asunto(s)
Glucosa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Quinasa C/metabolismo , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Oncogénicas de Retroviridae/fisiología , Células 3T3-L1 , Secuencias de Aminoácidos/genética , Animales , Transporte Biológico/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Insulina/farmacología , Antagonistas de Insulina/metabolismo , Antagonistas de Insulina/farmacología , Proteínas Sustrato del Receptor de Insulina , Isoenzimas/metabolismo , Ratones , Proteína Oncogénica v-cbl , Fenilalanina/genética , Fosfoproteínas/fisiología , Fosforilación , Unión Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-crk , Proteínas Oncogénicas de Retroviridae/biosíntesis , Proteínas Oncogénicas de Retroviridae/genética , Proteínas Oncogénicas de Retroviridae/metabolismo , Tirosina/genética , Tirosina/metabolismo
16.
Biochemistry ; 43(49): 15503-9, 2004 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-15581362

RESUMEN

Phosphatidylinositol 3-kinase (PI3K)-dependent activation of atypical protein kinase C (aPKC) is required for insulin-stimulated glucose transport. Although insulin receptor substrate-1 (IRS-1) and IRS-2, among other factors, activate PI3K, there is little information on the relative roles of IRS-1and IRS-2 during aPKC activation by insulin action in specific cell types. Presently, we have used immortalized brown adipocytes in which either IRS-1 or IRS-2 has been knocked out by recombinant methods to examine IRS-1 and IRS-2 requirements for activation of aPKC. We have also used these adipocytes to see if IRS-1 and IRS-2 are required for activation of Cbl, which is required for insulin-stimulated glucose transport and has been found to function upstream of both PI3K/aPKC and Crk during thiazolidinedione action in 3T3/L1 adipocytes [Miura et al. (2003) Biochemistry 42, 14335]. In brown adipocytes in which either IRS-1 or IRS-2 was knocked out, insulin-induced increases in aPKC activity and glucose transport were markedly diminished. These effects of insulin on aPKC and glucose transport were fully restored by retroviral-mediated expression of IRS-1 or IRS-2 in their respective knockout cells. Knockout of IRS-1 or IRS-2 also inhibited insulin-induced increases in Cbl binding to the p85 subunit of PI3K, which, along with IRS-1/2, may be required for activation of PI3K, aPKC, and glucose transport during insulin action in 3T3/L1 adipocytes. These findings provide evidence that directly links both IRS-1 and IRS-2 to aPKC activation in immortalized brown adipocytes, and further suggest that IRS-1 and IRS-2 are required for the activation of Cbl/PI3K during insulin action in these cells.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Insulina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/fisiología , Proteína Quinasa C/metabolismo , Proteínas Oncogénicas de Retroviridae/fisiología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/enzimología , Animales , Línea Celular Transformada , Desoxiglucosa/metabolismo , Sinergismo Farmacológico , Activación Enzimática , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular , Isoenzimas/metabolismo , Ratones , Ratones Noqueados , Proteína Oncogénica v-cbl , Fosfatidilinositol 3-Quinasas/fisiología , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosforilación , Proteína Quinasa C/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Tritio/metabolismo
17.
J Biol Chem ; 277(26): 23554-62, 2002 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-11978788

RESUMEN

Exercise increases glucose transport in muscle by activating 5'-AMP-activated protein kinase (AMPK), but subsequent events are unclear. Presently, we examined the possibility that AMPK increases glucose transport through atypical protein kinase Cs (aPKCs) by activating proline-rich tyrosine kinase-2 (PYK2), ERK pathway components, and phospholipase D (PLD). In mice, treadmill exercise rapidly activated ERK and aPKCs in mouse vastus lateralis muscles. In rat extensor digitorum longus (EDL) muscles, (a) AMPK activator, 5-aminoimidazole-4-carboxamide-1-beta-d-riboside (AICAR), activated PYK2, ERK and aPKCs; (b) effects of AICAR on ERK and aPKCs were blocked by tyrosine kinase inhibitor, genistein, and MEK1 inhibitor, PD98059; and (c) effects of AICAR on aPKCs and 2-deoxyglucose (2-DOG) uptake were inhibited by genistein, PD98059, and PLD-inhibitor, 1-butanol. Similarly, in L6 myotubes, (a) AICAR activated PYK2, ERK, PLD, and aPKCs; (b) effects of AICAR on ERK were inhibited by genistein, PD98059, and expression of dominant-negative PYK2; (c) effects of AICAR on PLD were inhibited by MEK1 inhibitor UO126; (d) effects of AICAR on aPKCs were inhibited by genistein, PD98059, 1-butanol, and expression of dominant-negative forms of PYK2, GRB2, SOS, RAS, RAF, and ERK; and (e) effects of AICAR on 2DOG uptake/GLUT4 translocation were inhibited by genistein, PD98059, UO126, 1-butanol, cell-permeable myristoylated PKC-zeta pseudosubstrate, and expression of kinase-inactive RAF, ERK, and PKC-zeta. AMPK activator dinitrophenol had effects on ERK, aPKCs, and 2-DOG uptake similar to those of AICAR. Our findings suggest that effects of exercise on glucose transport that are dependent on AMPK are mediated via PYK2, the ERK pathway, PLD, and aPKCs.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Glucosa/metabolismo , Isoenzimas/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Condicionamiento Físico Animal , Proteína Quinasa C/fisiología , Ribonucleótidos/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Activación Enzimática , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Fosfolipasa D/fisiología , Ratas , Ratas Sprague-Dawley
18.
Biochem J ; 362(Pt 3): 665-74, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11879194

RESUMEN

Sorbitol, "osmotic stress", stimulates GLUT4 glucose transporter translocation to the plasma membrane and glucose transport by a phosphatidylinositol (PI) 3-kinase-independent mechanism that reportedly involves non-receptor proline-rich tyrosine kinase-2 (PYK2) but subsequent events are obscure. In the present study, we found that extracellular signal-regulated kinase (ERK) pathway components, growth-factor-receptor-bound-2 protein, son of sevenless (SOS), RAS, RAF and mitogen-activated protein (MAP) kinase/ERK kinase, MEK(-1), operating downstream of PYK2, were required for sorbitol-stimulated GLUT4 translocation/glucose transport in rat adipocytes, L6 myotubes and 3T3/L1 adipocytes. Furthermore, sorbitol activated atypical protein kinase C (aPKC) through a similar mechanism depending on the PYK2/ERK pathway, independent of PI 3-kinase and its downstream effector, 3-phosphoinositide-dependent protein kinase-1 (PDK-1). Like PYK2/ERK pathway components, aPKCs were required for sorbitol-stimulated GLUT4 translocation/glucose transport. Interestingly, sorbitol stimulated increases in phospholipase D (PLD) activity and generation of phosphatidic acid (PA), which directly activated aPKCs. As with aPKCs and glucose transport, sorbitol-stimulated PLD activity was dependent on the ERK pathway. Moreover, PLD-generated PA was required for sorbitol-induced activation of aPKCs and GLUT4 translocation/glucose transport. Our findings suggest that sorbitol sequentially activates PYK2, the ERK pathway and PLD, thereby increasing PA, which activates aPKCs and GLUT4 translocation. This mechanism contrasts with that of insulin, which primarily uses PI 3-kinase, D3-PO(4) polyphosphoinositides and PDK-1 to activate aPKCs.


Asunto(s)
Adipocitos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares , Fosfolipasa D/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Sorbitol/farmacología , Células 3T3 , Androstadienos/farmacología , Animales , Células Cultivadas , Dantroleno/farmacología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Epidídimo , Flavonoides/farmacología , Quinasa 2 de Adhesión Focal , Transportador de Glucosa de Tipo 4 , Masculino , Ratones , Músculo Esquelético/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Transporte de Proteínas , Ratas , Proteínas Recombinantes/metabolismo , Transfección , Wortmanina
19.
Biochemistry ; 42(48): 14335-41, 2003 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-14640702

RESUMEN

The thiazolidinedione (TZD), rosiglitazone, has previously been found to tyrosine-phosphorylate Cbl and activate Cbl-dependent phosphatidylinositol (PI) 3-kinase and atypical protein kinase Cs (aPKCs) while stimulating glucose transport in 3T3/L1 adipocytes. Presently, the role of Cbl in rosiglitazone action was further assessed in both 3T3/L1 and human adipocytes by expressing Y371F and/or Y731F mutant forms of Cbl that nullified the functionality of canonical pYXXM motifs in Cbl. These mutants diminished the interaction of Cbl with the p85 subunit of PI 3-kinase and inhibited subsequent increases in Cbl-dependent PI 3-kinase activity, aPKC activity, and glucose transport. These mutants also inhibited the interaction of Cbl with Crk, which has been implicated in the activation of other PI 3-kinase-independent signaling factors that have been found to be required during activation of glucose transport by insulin and other agonists. We conclude that pYXXM motifs in Cbl serve to activate PI 3-kinase-dependent and possibly PI 3-kinase-independent pathways that are required for TZD-dependent glucose transport in adipocytes.


Asunto(s)
Adipocitos/enzimología , Glucosa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Tiazolidinedionas/farmacología , Ubiquitina-Proteína Ligasas , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Secuencias de Aminoácidos , Animales , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Desoxiglucosa/antagonistas & inhibidores , Desoxiglucosa/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Humanos , Insulina/farmacología , Isoenzimas , Ratones , Mutagénesis Sitio-Dirigida , Inhibidores de las Quinasa Fosfoinosítidos-3 , Unión Proteica , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-cbl , Proteínas Proto-Oncogénicas c-crk , Tiazolidinedionas/antagonistas & inhibidores
20.
J Biol Chem ; 279(24): 24929-34, 2004 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-15069067

RESUMEN

Insulin resistance in type 2 diabetes is characterized by defects in muscle glucose uptake and hepatic overproduction of both glucose and lipids. These hepatic defects are perplexing because insulin normally suppresses glucose production and increases lipid synthesis in the liver. To understand the mechanisms for these seemingly paradoxical defects, we examined the activation of atypical protein kinase C (aPKC) and protein kinase B (PKB), two key signaling factors that operate downstream of phosphatidylinositol 3-kinase and regulate various insulin-sensitive metabolic processes. Livers and muscles of three insulin-resistant rodent models were studied. In livers of type 2 diabetic non-obese Goto-Kakazaki rats and ob/ob-diabetic mice, the activation of PKB was impaired, whereas activation of aPKC was surprisingly maintained. In livers of non-diabetic high fatfed mice, the activation of both aPKC and PKB was maintained. In contrast to the maintenance of aPKC activation in the liver, insulin activation of aPKC was impaired in muscles of Goto-Kakazaki-diabetic rats and ob/ob-diabetic and non-diabetic high fat-fed mice. These findings suggest that, at least in these rodent models, (a) defects in aPKC activation contribute importantly to skeletal muscle insulin resistance observed in both high fat feeding and type 2 diabetes; (b) insulin signaling defects in muscle are not necessarily accompanied by similar defects in liver; (c) defects in hepatic PKB activation occur in association with, and probably contribute importantly to, the development of overt diabetes; and (d) maintenance of hepatic aPKC activation may explain the continued effectiveness of insulin for stimulating certain metabolic actions in the liver.


Asunto(s)
Diabetes Mellitus Tipo 2/enzimología , Resistencia a la Insulina , Insulina/farmacología , Hígado/metabolismo , Músculo Esquelético/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/metabolismo , Animales , Grasas de la Dieta/administración & dosificación , Activación Enzimática/efectos de los fármacos , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Fenotipo , Fosfatidilinositol 3-Quinasas/fisiología , Fosfoproteínas/fisiología , Proteínas Proto-Oncogénicas c-akt , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA