Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 177(4): 896-909.e20, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31030999

RESUMEN

In mammals, endogenous circadian clocks sense and respond to daily feeding and lighting cues, adjusting internal ∼24 h rhythms to resonate with, and anticipate, external cycles of day and night. The mechanism underlying circadian entrainment to feeding time is critical for understanding why mistimed feeding, as occurs during shift work, disrupts circadian physiology, a state that is associated with increased incidence of chronic diseases such as type 2 (T2) diabetes. We show that feeding-regulated hormones insulin and insulin-like growth factor 1 (IGF-1) reset circadian clocks in vivo and in vitro by induction of PERIOD proteins, and mistimed insulin signaling disrupts circadian organization of mouse behavior and clock gene expression. Insulin and IGF-1 receptor signaling is sufficient to determine essential circadian parameters, principally via increased PERIOD protein synthesis. This requires coincident mechanistic target of rapamycin (mTOR) activation, increased phosphoinositide signaling, and microRNA downregulation. Besides its well-known homeostatic functions, we propose insulin and IGF-1 are primary signals of feeding time to cellular clocks throughout the body.


Asunto(s)
Relojes Circadianos/fisiología , Conducta Alimentaria/fisiología , Proteínas Circadianas Period/metabolismo , Animales , Ritmo Circadiano/fisiología , Femenino , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Mamíferos/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor IGF Tipo 1/metabolismo , Transducción de Señal
2.
Nature ; 623(7988): 842-852, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37853127

RESUMEN

Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions1. Reciprocally, macromolecules restrict the movement of 'structured' water molecules within their hydration layers, reducing the available 'free' bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales2,3; we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function.


Asunto(s)
Sustancias Macromoleculares , Proteínas , Solventes , Termodinámica , Agua , Muerte Celular , Citosol/química , Citosol/metabolismo , Homeostasis , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Concentración Osmolar , Presión , Proteínas/química , Proteínas/metabolismo , Solventes/química , Solventes/metabolismo , Temperatura , Factores de Tiempo , Agua/química , Agua/metabolismo
3.
EMBO J ; 41(1): e108883, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34842284

RESUMEN

The daily organisation of most mammalian cellular functions is attributed to circadian regulation of clock-controlled protein expression, driven by daily cycles of CRYPTOCHROME-dependent transcriptional feedback repression. To test this, we used quantitative mass spectrometry to compare wild-type and CRY-deficient fibroblasts under constant conditions. In CRY-deficient cells, we found that temporal variation in protein, phosphopeptide, and K+ abundance was at least as great as wild-type controls. Most strikingly, the extent of temporal variation within either genotype was much smaller than overall differences in proteome composition between WT and CRY-deficient cells. This proteome imbalance in CRY-deficient cells and tissues was associated with increased susceptibility to proteotoxic stress, which impairs circadian robustness, and may contribute to the wide-ranging phenotypes of CRY-deficient mice. Rather than generating large-scale daily variation in proteome composition, we suggest it is plausible that the various transcriptional and post-translational functions of CRY proteins ultimately act to maintain protein and osmotic homeostasis against daily perturbation.


Asunto(s)
Ritmo Circadiano/fisiología , Criptocromos/metabolismo , Proteostasis , Animales , Criptocromos/deficiencia , Transporte Iónico , Ratones , Fosfoproteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/metabolismo , Proteómica , Reproducibilidad de los Resultados , Estrés Fisiológico , Factores de Tiempo
5.
Am J Physiol Cell Physiol ; 324(3): C632-C643, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689675

RESUMEN

Circadian rhythms in physiology and behavior allow organisms to anticipate the daily environmental changes imposed by the rotation of our planet around its axis. Although these rhythms eventually manifest at the organismal level, a cellular basis for circadian rhythms has been demonstrated. Significant contributors to these cell-autonomous rhythms are daily cycles in gene expression and protein translation. However, recent data revealed cellular rhythms in other biological processes, including ionic currents, ion transport, and cytosolic ion abundance. Circadian rhythms in ion currents sustain circadian variation in action potential firing rate, which coordinates neuronal behavior and activity. Circadian regulation of metal ions abundance and dynamics is implicated in distinct cellular processes, from protein translation to membrane activity and osmotic homeostasis. In turn, studies showed that manipulating ion abundance affects the expression of core clock genes and proteins, suggestive of a close interplay. However, the relationship between gene expression cycles, ion dynamics, and cellular function is still poorly characterized. In this review, I will discuss the mechanisms that generate ion rhythms, the cellular functions they govern, and how they feed back to regulate the core clock machinery.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Ritmo Circadiano/fisiología , Neuronas/metabolismo , Fenómenos Fisiológicos Celulares , Homeostasis , Relojes Circadianos/genética
6.
Proc Natl Acad Sci U S A ; 113(36): 10085-90, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27528682

RESUMEN

Viruses are intracellular pathogens that hijack host cell machinery and resources to replicate. Rather than being constant, host physiology is rhythmic, undergoing circadian (∼24 h) oscillations in many virus-relevant pathways, but whether daily rhythms impact on viral replication is unknown. We find that the time of day of host infection regulates virus progression in live mice and individual cells. Furthermore, we demonstrate that herpes and influenza A virus infections are enhanced when host circadian rhythms are abolished by disrupting the key clock gene transcription factor Bmal1. Intracellular trafficking, biosynthetic processes, protein synthesis, and chromatin assembly all contribute to circadian regulation of virus infection. Moreover, herpesviruses differentially target components of the molecular circadian clockwork. Our work demonstrates that viruses exploit the clockwork for their own gain and that the clock represents a novel target for modulating viral replication that extends beyond any single family of these ubiquitous pathogens.


Asunto(s)
Factores de Transcripción ARNTL/genética , Relojes Circadianos/genética , Herpes Simple/virología , Infecciones por Herpesviridae/virología , Interacciones Huésped-Patógeno , Infecciones por Orthomyxoviridae/virología , Infecciones Tumorales por Virus/virología , Factores de Transcripción ARNTL/deficiencia , Animales , Transporte Biológico , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Línea Celular , Ensamble y Desensamble de Cromatina , Ritmo Circadiano/genética , Cricetinae , Células Epiteliales/metabolismo , Células Epiteliales/virología , Femenino , Regulación de la Expresión Génica , Genes Reporteros , Herpes Simple/genética , Herpes Simple/metabolismo , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/metabolismo , Herpesvirus Humano 1/patogenicidad , Herpesvirus Humano 1/fisiología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H1N1 del Virus de la Influenza A/fisiología , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/metabolismo , Rhadinovirus/patogenicidad , Rhadinovirus/fisiología , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/metabolismo , Replicación Viral
7.
Circ Res ; 117(8): 707-19, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26243800

RESUMEN

RATIONALE: Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. OBJECTIVE: How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. METHODS AND RESULTS: Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. CONCLUSIONS: Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications.


Asunto(s)
Cardiomegalia/prevención & control , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Miocitos Cardíacos/enzimología , Sistemas de Mensajero Secundario , Adenoviridae/genética , Animales , Animales Recién Nacidos , Cardiomegalia/enzimología , Cardiomegalia/genética , Cardiomegalia/patología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/genética , Modelos Animales de Enfermedad , Vectores Genéticos , Masculino , Microdominios de Membrana/enzimología , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Fosforilación , Interferencia de ARN , Ratas Sprague-Dawley , Ratas Wistar , Sistemas de Mensajero Secundario/efectos de los fármacos , Factores de Tiempo , Transducción Genética , Transfección
8.
J Biol Chem ; 288(37): 26505-11, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23861436

RESUMEN

Living organisms possess biological clocks that resonate with environmental cycles in light, temperature, and food availability. Recently, circadian oscillations in the redox state of peroxiredoxin have been described as an additional non-transcriptional timekeeping mechanism. Of note, this redox cycle is conserved in both prokaryotes and eukaryotes. How the classical "transcription-translation feedback loop" model and this redox oscillation are related is still poorly understood. In this minireview, we describe the most recent evidence pointing to cross-talk between the circadian clock and the redox status of the cell.


Asunto(s)
Relojes Circadianos/fisiología , Regulación Enzimológica de la Expresión Génica , Oxidación-Reducción , Reductasa de Tiorredoxina-Disulfuro/química , Animales , Ritmo Circadiano , Homeostasis , Humanos , Peróxido de Hidrógeno/química , Oscilometría , Oxígeno/química , Peroxirredoxinas/química , Transducción de Señal , Tiorredoxinas/química
9.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617352

RESUMEN

Circadian (~24 h) rhythms are a fundamental feature of life, and their disruption increases the risk of infectious diseases, metabolic disorders, and cancer1-6. Circadian rhythms couple to the cell cycle across eukaryotes7,8 but the underlying mechanism is unknown. We previously identified an evolutionarily conserved circadian oscillation in intracellular potassium concentration, [K+]i9,10. As critical events in the cell cycle are regulated by intracellular potassium11,12, an enticing hypothesis is that circadian rhythms in [K+]i form the basis of this coupling. We used a minimal model cell, the alga Ostreococcus tauri, to uncover the role of potassium in linking these two cycles. We found direct reciprocal feedback between [K+]i and circadian gene expression. Inhibition of proliferation by manipulating potassium rhythms was dependent on the phase of the circadian cycle. Furthermore, we observed a total inhibition of cell proliferation when circadian gene expression is inhibited. Strikingly, under these conditions a sudden enforced gradient of extracellular potassium was sufficient to induce a round of cell division. Finally, we provide evidence that interactions between potassium and circadian rhythms also influence proliferation in mammalian cells. These results establish circadian regulation of intracellular potassium levels as a primary factor coupling the cell- and circadian cycles across diverse organisms.

10.
Circ Res ; 108(8): 929-39, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21330599

RESUMEN

RATIONALE: cAMP and cGMP are intracellular second messengers involved in heart pathophysiology. cGMP can potentially affect cAMP signals via cGMP-regulated phosphodiesterases (PDEs). OBJECTIVE: To study the effect of cGMP signals on the local cAMP response to catecholamines in specific subcellular compartments. METHODS AND RESULTS: We used real-time FRET imaging of living rat ventriculocytes expressing targeted cAMP and cGMP biosensors to detect cyclic nucleotides levels in specific locales. We found that the compartmentalized, but not the global, cAMP response to isoproterenol is profoundly affected by cGMP signals. The effect of cGMP is to increase cAMP levels in the compartment where the protein kinase (PK)A-RI isoforms reside but to decrease cAMP in the compartment where the PKA-RII isoforms reside. These opposing effects are determined by the cGMP-regulated PDEs, namely PDE2 and PDE3, with the local activity of these PDEs being critically important. The cGMP-mediated modulation of cAMP also affects the phosphorylation of PKA targets and myocyte contractility. CONCLUSIONS: cGMP signals exert opposing effects on local cAMP levels via different PDEs the activity of which is exerted in spatially distinct subcellular domains. Inhibition of PDE2 selectively abolishes the negative effects of cGMP on cAMP and may have therapeutic potential.


Asunto(s)
Catecolaminas/fisiología , AMP Cíclico/fisiología , GMP Cíclico/fisiología , Miocitos Cardíacos/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/biosíntesis , Miocitos Cardíacos/citología , Miocitos Cardíacos/enzimología , Ratas
11.
Am J Physiol Heart Circ Physiol ; 302(2): H379-90, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22037184

RESUMEN

Phosphodiesterases are key enzymes in the cAMP signaling cascade. They convert cAMP in its inactive form 5'-AMP and critically regulate the intensity and the duration of cAMP-mediated signals. Multiple isoforms exist that possess different intracellular distributions, different affinities for cAMP, and different catalytic and regulatory properties. This complex repertoire of enzymes provides a multiplicity of ways to modulate cAMP levels, to integrate more signaling pathways, and to respond to the specific needs of the cell within distinct subcellular domains. In this review we summarize key findings on phosphodiesterase compartmentalization in the cardiovascular system.


Asunto(s)
Sistema Cardiovascular/metabolismo , AMP Cíclico/metabolismo , Miocardio/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal/fisiología , Sistema Cardiovascular/enzimología , Humanos
12.
Biochem Soc Trans ; 40(1): 11-4, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22260658

RESUMEN

cAMP and cGMP signalling pathways are common targets in the pharmacological treatment of heart failure, and often drugs that modulate the level of these second messengers are simultaneously administered to patients. cGMP can potentially affect cAMP levels by modulating the activity of PDEs (phosphodiesterases), the enzymes that degrade cyclic nucleotides. This biochemical cross-talk provides the means for drugs that increase cGMP to concomitantly affect cAMP signals. Recent studies using FRET (fluorescence resonance energy transfer) reporters and real-time imaging show that, in cardiac myocytes, the interplay between cGMP and cAMP has different outcomes depending on the specific location where the cross-modulation occurs. cGMP can either increase or decrease the cAMP response to catecholamines, based on the cyclase that generates it and on the PDEs associated with each subcellular compartment. cGMP-mediated modulation of cAMP signals has functional relevance as it affects protein phosphorylation downstream of protein kinase A and myocyte contractility. The physical separation of positive and negative modulation of cAMP levels by cGMP offers the previously unrecognized possibility to selectively modulate local cAMP signals to improve the efficacy of therapy.


Asunto(s)
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Corazón/fisiopatología , Miocitos Cardíacos/fisiología , Sistemas de Mensajero Secundario , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/fisiopatología , Humanos , Isoenzimas/metabolismo , Miocardio/enzimología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
14.
J Cardiovasc Pharmacol ; 58(4): 345-53, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21654331

RESUMEN

A kinase anchoring proteins (AKAPs) belong to a family of functionally related proteins capable of binding protein kinase A (PKA) and tether it to relevant targets. In this way, AKAPs organize macromolecular complexes to segregate PKA activity and retain signal specificity. In the heart, AKAP-PKA interaction is central to the regulation of cardiac contractility. Phosphodiesterases belong to a large superfamily of enzymes that degrade 3'-5'-cyclic adenosine monophosphate (cAMP). They possess diverse catalytic properties and multiple regulatory mechanisms and control the duration and amplitude of the cAMP signal, including its propagation in space. AKAPs, together with PKA, can also assemble phosphodiesterases thereby providing a means to locally control cAMP dynamics at the level of single macromolecular complexes. This allows for the fine tuning of the cAMP response to the specific demands of the cell.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , AMP Cíclico/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Corazón/fisiología , Corazón/fisiopatología , Humanos , Transducción de Señal/fisiología
15.
Curr Opin Syst Biol ; 28: None, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34950808

RESUMEN

Circadian rhythms are ∼24 h cycles of organismal and cellular activity ubiquitous to mammalian physiology. A prevailing paradigm suggests that timing information flows linearly from rhythmic transcription via protein abundance changes to drive circadian regulation of cellular function. Challenging this view, recent evidence indicates daily variation in many cellular functions arises through rhythmic post-translational regulation of protein activity. We suggest cellular circadian timing primarily functions to maintain proteome homeostasis rather than perturb it. Indeed, although relevant to timekeeping mechanism, daily rhythms of clock protein abundance may be the exception, not the rule. Informed by insights from yeast and mammalian models, we propose that optimal bioenergetic efficiency results from coupled rhythms in mammalian target of rapamycin complex activity, protein synthesis/turnover, ion transport and protein sequestration, which drive facilitatory rhythms in metabolic flux and substrate utilisation. Such daily consolidation of proteome renewal would account for many aspects of circadian cell biology whilst maintaining osmotic homeostasis.

16.
Methods Mol Biol ; 2130: 19-27, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33284433

RESUMEN

Inductively coupled plasma mass spectrometry (ICP-MS) is a sensitive instrumental analysis technique used for multielemental and isotopic determination. Here we provide a sample preparation and circadian ICP-MS analysis protocol for use with mammalian tissues and cells, using mouse fibroblasts as a case study.


Asunto(s)
Relojes Circadianos , Espectrometría de Masas/métodos , Animales , Células Cultivadas , Fibroblastos/metabolismo , Espectrometría de Masas/instrumentación , Ratones
17.
Science ; 372(6539)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33859002

RESUMEN

Ness-Cohn et al claim that our observations of transcriptional circadian rhythms in the absence of the core clock gene Bmal1 in mouse skin fibroblast cells are supported by inadequate evidence. They claim that they were unable to reproduce some of the original findings with their reanalysis. We disagree with their analyses and outlook.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Factores de Transcripción ARNTL/genética , Animales , Ritmo Circadiano/genética , Ratones
18.
Science ; 372(6539)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33859003

RESUMEN

Abruzzi et al argue that transcriptome oscillations found in our study in the absence of Bmal1 are of low amplitude, statistical significance, and consistency. However, their conclusions rely solely on a different statistical algorithm than we used. We provide statistical measures and additional analyses showing that our original analyses and observations are accurate. Further, we highlight independent lines of evidence indicating Bmal1-independent 24-hour molecular oscillations.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Factores de Transcripción ARNTL/genética , Ritmo Circadiano/genética , Transcriptoma
19.
Commun Biol ; 4(1): 1147, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593975

RESUMEN

The cellular landscape changes dramatically over the course of a 24 h day. The proteome responds directly to daily environmental cycles and is additionally regulated by the circadian clock. To quantify the relative contribution of diurnal versus circadian regulation, we mapped proteome dynamics under light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage, which allowed an unprecedented insight into the identity of proteins that facilitate rhythmic cellular functions. The overlap between diurnally- and circadian-regulated proteins was modest and these proteins exhibited different phases of oscillation between the two conditions. Transcript oscillations were generally poorly predictive of protein oscillations, in which a far lower relative amplitude was observed. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a different phase distribution compared with rhythmic soluble proteins, indicating the existence of a circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Our observations argue that the cellular spatiotemporal proteome is shaped by a complex interaction between intrinsic and extrinsic regulatory factors through rhythmic regulation at the transcriptional as well as post-transcriptional, translational, and post-translational levels.


Asunto(s)
Proteínas Algáceas/genética , Chlorophyta/fisiología , Ambiente , Periodicidad , Proteoma/genética , Proteínas Algáceas/metabolismo , Chlorophyta/genética , Proteoma/metabolismo , Análisis Espacio-Temporal
20.
Nat Commun ; 12(1): 2472, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931651

RESUMEN

Electrical activity in the heart exhibits 24-hour rhythmicity, and potentially fatal arrhythmias are more likely to occur at specific times of day. Here, we demonstrate that circadian clocks within the brain and heart set daily rhythms in sinoatrial (SA) and atrioventricular (AV) node activity, and impose a time-of-day dependent susceptibility to ventricular arrhythmia. Critically, the balance of circadian inputs from the autonomic nervous system and cardiomyocyte clock to the SA and AV nodes differ, and this renders the cardiac conduction system sensitive to decoupling during abrupt shifts in behavioural routine and sleep-wake timing. Our findings reveal a functional segregation of circadian control across the heart's conduction system and inherent susceptibility to arrhythmia.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Nodo Atrioventricular/fisiología , Ritmo Circadiano/fisiología , Frecuencia Cardíaca/fisiología , Miocitos Cardíacos/fisiología , Nodo Sinoatrial/fisiología , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Adulto , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Nodo Atrioventricular/metabolismo , Sistema Nervioso Autónomo/fisiología , Relojes Circadianos/fisiología , Electrocardiografía , Femenino , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Nodo Sinoatrial/metabolismo , Sueño/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA