Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(13): 2354-2369.e17, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35568036

RESUMEN

Interferons (IFNs) induce an antimicrobial state, protecting tissues from infection. Many viruses inhibit IFN signaling, but whether bacterial pathogens evade IFN responses remains unclear. Here, we demonstrate that the Shigella OspC family of type-III-secreted effectors blocks IFN signaling independently of its cell death inhibitory activity. Rather, IFN inhibition was mediated by the binding of OspC1 and OspC3 to the Ca2+ sensor calmodulin (CaM), blocking CaM kinase II and downstream JAK/STAT signaling. The growth of Shigella lacking OspC1 and OspC3 was attenuated in epithelial cells and in a murine model of infection. This phenotype was rescued in both models by the depletion of IFN receptors. OspC homologs conserved in additional pathogens not only bound CaM but also inhibited IFN, suggesting a widespread virulence strategy. These findings reveal a conserved but previously undescribed molecular mechanism of IFN inhibition and demonstrate the critical role of Ca2+ and IFN targeting in bacterial pathogenesis.


Asunto(s)
Interferones , Factores de Virulencia , Animales , Antivirales , Señalización del Calcio , Células Epiteliales/metabolismo , Interferones/metabolismo , Ratones , Factores de Virulencia/metabolismo
2.
Cell ; 182(2): 515-530.e17, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32610083

RESUMEN

Imaging of biological matter across resolution scales entails the challenge of preserving the direct and unambiguous correlation of subject features from the macroscopic to the microscopic level. Here, we present a correlative imaging platform developed specifically for imaging cells in 3D under cryogenic conditions by using X-rays and visible light. Rapid cryo-preservation of biological specimens is the current gold standard in sample preparation for ultrastructural analysis in X-ray imaging. However, cryogenic fluorescence localization methods are, in their majority, diffraction-limited and fail to deliver matching resolution. We addressed this technological gap by developing an integrated, user-friendly platform for 3D correlative imaging of cells in vitreous ice by using super-resolution structured illumination microscopy in conjunction with soft X-ray tomography. The power of this approach is demonstrated by studying the process of reovirus release from intracellular vesicles during the early stages of infection and identifying intracellular virus-induced structures.


Asunto(s)
Microscopía por Crioelectrón/métodos , Reoviridae/fisiología , Línea Celular Tumoral , Microscopía por Crioelectrón/instrumentación , Endosomas/metabolismo , Endosomas/virología , Colorantes Fluorescentes/química , Humanos , Imagenología Tridimensional , Microscopía Fluorescente , Reoviridae/química , Liberación del Virus/fisiología
3.
EMBO J ; 40(16): e107821, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34159616

RESUMEN

SARS-CoV-2 is a newly emerged coronavirus that caused the global COVID-19 outbreak in early 2020. COVID-19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS-CoV-2-host cell interactions and entry mechanisms remain poorly understood. Investigating SARS-CoV-2 infection in tissue culture, we found that the protease TMPRSS2 determines the entry pathway used by the virus. In the presence of TMPRSS2, the proteolytic process of SARS-CoV-2 was completed at the plasma membrane, and the virus rapidly entered the cells within 10 min in a pH-independent manner. When target cells lacked TMPRSS2 expression, the virus was endocytosed and sorted into endolysosomes, from which SARS-CoV-2 entered the cytosol via acid-activated cathepsin L protease 40-60 min post-infection. Overexpression of TMPRSS2 in non-TMPRSS2 expressing cells abolished the dependence of infection on the cathepsin L pathway and restored sensitivity to the TMPRSS2 inhibitors. Together, our results indicate that SARS-CoV-2 infects cells through distinct, mutually exclusive entry routes and highlight the importance of TMPRSS2 for SARS-CoV-2 sorting into either pathway.


Asunto(s)
COVID-19/metabolismo , Catepsina L/metabolismo , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Animales , COVID-19/genética , Células CACO-2 , Chlorocebus aethiops , Endocitosis , Interacciones Microbiota-Huesped , Humanos , Concentración de Iones de Hidrógeno , Proteolisis , Serina Endopeptidasas/genética , Transducción de Señal , Células Vero , Internalización del Virus
4.
Mol Syst Biol ; 20(3): 242-275, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38273161

RESUMEN

Isogenic cells respond in a heterogeneous manner to interferon. Using a micropatterning approach combined with high-content imaging and spatial analyses, we characterized how the population context (position of a cell with respect to neighboring cells) of epithelial cells affects their response to interferons. We identified that cells at the edge of cellular colonies are more responsive than cells embedded within colonies. We determined that this spatial heterogeneity in interferon response resulted from the polarized basolateral interferon receptor distribution, making cells located in the center of cellular colonies less responsive to ectopic interferon stimulation. This was conserved across cell lines and primary cells originating from epithelial tissues. Importantly, cells embedded within cellular colonies were not protected from viral infection by apical interferon treatment, demonstrating that the population context-driven heterogeneous response to interferon influences the outcome of viral infection. Our data highlights that the behavior of isolated cells does not directly translate to their behavior in a population, placing the population context as one important factor influencing heterogeneity during interferon response in epithelial cells.


Asunto(s)
Interferones , Virosis , Humanos , Interferones/farmacología , Interferones/metabolismo , Células Epiteliales/metabolismo , Línea Celular , Virosis/metabolismo
5.
PLoS Comput Biol ; 19(8): e1011356, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37566610

RESUMEN

Human airway epithelium (HAE) represents the primary site of viral infection for SARS-CoV-2. Comprising different cell populations, a lot of research has been aimed at deciphering the major cell types and infection dynamics that determine disease progression and severity. However, the cell type-specific replication kinetics, as well as the contribution of cellular composition of the respiratory epithelium to infection and pathology are still not fully understood. Although experimental advances, including Air-liquid interface (ALI) cultures of reconstituted pseudostratified HAE, as well as lung organoid systems, allow the observation of infection dynamics under physiological conditions in unprecedented level of detail, disentangling and quantifying the contribution of individual processes and cells to these dynamics remains challenging. Here, we present how a combination of experimental data and mathematical modelling can be used to infer and address the influence of cell type specific infectivity and tissue composition on SARS-CoV-2 infection dynamics. Using a stepwise approach that integrates various experimental data on HAE culture systems with regard to tissue differentiation and infection dynamics, we develop an individual cell-based model that enables investigation of infection and regeneration dynamics within pseudostratified HAE. In addition, we present a novel method to quantify tissue integrity based on image data related to the standard measures of transepithelial electrical resistance measurements. Our analysis provides a first aim of quantitatively assessing cell type specific infection kinetics and shows how tissue composition and changes in regeneration capacity, as e.g. in smokers, can influence disease progression and pathology. Furthermore, we identified key measurements that still need to be assessed in order to improve inference of cell type specific infection kinetics and disease progression. Our approach provides a method that, in combination with additional experimental data, can be used to disentangle the complex dynamics of viral infection and immunity within human airway epithelial culture systems.


Asunto(s)
COVID-19 , Humanos , COVID-19/metabolismo , Células Epiteliales/metabolismo , SARS-CoV-2 , Células Cultivadas , Epitelio , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología
6.
J Virol ; 96(7): e0170521, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35262371

RESUMEN

The coronavirus SARS-CoV-2 caused the COVID-19 global pandemic leading to 5.3 million deaths worldwide as of December 2021. The human intestine was found to be a major viral target which could have a strong impact on virus spread and pathogenesis since it is one of the largest organs. While type I interferons (IFNs) are key cytokines acting against systemic virus spread, in the human intestine type III IFNs play a major role by restricting virus infection and dissemination without disturbing homeostasis. Recent studies showed that both type I and III IFNs can inhibit SARS-CoV-2 infection, but it is not clear whether one IFN controls SARS-CoV-2 infection of the human intestine better or with a faster kinetics. In this study, we could show that type I and III IFNs both possess antiviral activity against SARS-CoV-2 in human intestinal epithelial cells (hIECs); however, type III IFN is more potent. Shorter type III IFN pretreatment times and lower concentrations were required to efficiently reduce virus load compared to type I IFNs. Moreover, type III IFNs significantly inhibited SARS-CoV-2 even 4 h postinfection and induced a long-lasting antiviral effect in hIECs. Importantly, the sensitivity of SARS-CoV-2 to type III IFNs was virus specific since type III IFN did not control VSV infection as efficiently. Together, these results suggest that type III IFNs have a higher potential for IFN-based treatment of SARS-CoV-2 intestinal infection compared to type I IFNs. IMPORTANCE SARS-CoV-2 infection is not restricted to the respiratory tract and a large number of COVID-19 patients experience gastrointestinal distress. Interferons are key molecules produced by the cell to combat virus infection. Here, we evaluated how two types of interferons (type I and III) can combat SARS-CoV-2 infection of human gut cells. We found that type III interferons were crucial to control SARS-CoV-2 infection when added both before and after infection. Importantly, type III interferons were also able to produce a long-lasting effect, as cells were protected from SARS-CoV-2 infection up to 72 h posttreatment. This study suggested an alternative treatment possibility for SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Interferón Tipo I , Interferones , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Células Cultivadas , Células Epiteliales , Humanos , Interferón Tipo I/farmacología , Interferones/farmacología , SARS-CoV-2/efectos de los fármacos , Interferón lambda
7.
J Virol ; 96(17): e0070622, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000839

RESUMEN

Rotavirus infects intestinal epithelial cells and is the leading cause of gastroenteritis in infants worldwide. Upon viral infection, intestinal cells produce type I and type III interferons (IFNs) to alert the tissue and promote an antiviral state. These two types of IFN bind to different receptors but induce similar pathways that stimulate the activation of interferon-stimulated genes (ISGs) to combat viral infection. In this work, we studied the spread of a fluorescent wild-type (WT) SA11 rotavirus in human colorectal cancer cells lacking specific interferon receptors and compared it to that of an NSP1 mutant rotavirus that cannot interfere with the host intrinsic innate immune response. We could show that the WT rotavirus efficiently blocks the production of type I IFNs but that type III IFNs are still produced, whereas the NSP1 mutant rotavirus allows the production of both. Interestingly, while both exogenously added type I and type III IFNs could efficiently protect cells against rotavirus infection, endogenous type III IFNs were found to be key to limit infection of human intestinal cells by rotavirus. By using a fluorescent reporter cell line to highlight the cells mounting an antiviral program, we could show that paracrine signaling driven by type III IFNs efficiently controls the spread of both WT and NSP1 mutant rotavirus. Our results strongly suggest that NSP1 efficiently blocks the type I IFN-mediated antiviral response; however, its restriction of the type III IFN-mediated one is not sufficient to prevent type III IFNs from partially inhibiting viral spread in intestinal epithelial cells. Additionally, our findings further highlight the importance of type III IFNs in controlling rotavirus infection, which could be exploited as antiviral therapeutic measures. IMPORTANCE Rotavirus is one of the most common causes of gastroenteritis worldwide. In developing countries, rotavirus infections lead to more than 200,000 deaths in infants and children. The intestinal epithelial cells lining the gastrointestinal tract combat rotavirus infection by two key antiviral compounds known as type I and III interferons. However, rotavirus has developed countermeasures to block the antiviral actions of the interferons. In this work, we evaluated the arms race between rotavirus and type I and III interferons. We determined that although rotavirus could block the induction of type I interferons, it was unable to block type III interferons. The ability of infected cells to produce and release type III interferons leads to the protection of the noninfected neighboring cells and the clearance of rotavirus infection from the epithelium. This suggests that type III interferons are key antiviral agents and could be used to help control rotavirus infections in children.


Asunto(s)
Células Epiteliales , Interferones , Mucosa Intestinal , Infecciones por Rotavirus , Rotavirus , Antivirales/inmunología , Niño , Células Epiteliales/inmunología , Células Epiteliales/virología , Gastroenteritis/virología , Humanos , Inmunidad Innata , Lactante , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/inmunología , Interferones/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/virología , Mutación , Rotavirus/genética , Rotavirus/crecimiento & desarrollo , Rotavirus/inmunología , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/virología , Proteínas no Estructurales Virales/genética
8.
PLoS Pathog ; 17(6): e1009687, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34181691

RESUMEN

COVID-19 outbreak is the biggest threat to human health in recent history. Currently, there are over 1.5 million related deaths and 75 million people infected around the world (as of 22/12/2020). The identification of virulence factors which determine disease susceptibility and severity in different cell types remains an essential challenge. The serine protease TMPRSS2 has been shown to be important for S protein priming and viral entry, however, little is known about its regulation. SPINT2 is a member of the family of Kunitz type serine protease inhibitors and has been shown to inhibit TMPRSS2. Here, we explored the existence of a co-regulation between SPINT2/TMPRSS2 and found a tightly regulated protease/inhibitor expression balance across tissues. We found that SPINT2 negatively correlates with SARS-CoV-2 expression in Calu-3 and Caco-2 cell lines and was down-regulated in secretory cells from COVID-19 patients. We validated our findings using Calu-3 cell lines and observed a strong increase in viral load after SPINT2 knockdown, while overexpression lead to a drastic reduction of the viral load. Additionally, we evaluated the expression of SPINT2 in datasets from comorbid diseases using bulk and scRNA-seq data. We observed its down-regulation in colon, kidney and liver tumors as well as in alpha pancreatic islets cells from diabetes Type 2 patients, which could have implications for the observed comorbidities in COVID-19 patients suffering from chronic diseases.


Asunto(s)
COVID-19/metabolismo , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/metabolismo , Internalización del Virus , Células A549 , COVID-19/genética , Células CACO-2 , Humanos , Glicoproteínas de Membrana/genética , SARS-CoV-2/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Índice de Severidad de la Enfermedad
9.
Mol Ther ; 30(5): 2005-2023, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35038579

RESUMEN

Despite rapid development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant modalities to curb the pandemic by directly attacking the virus on a genetic level remain highly desirable and are urgently needed. Here we comprehensively illustrate the capacity of adeno-associated virus (AAV) vectors co-expressing a cocktail of three short hairpin RNAs (shRNAs; RNAi triggers) directed against the SARS-CoV-2 RdRp and N genes as versatile and effective antiviral agents. In cultured monkey cells and human gut organoids, our most potent vector, SAVIOR (SARS virus repressor), suppressed SARS-CoV-2 infection to background levels. Strikingly, in control experiments using single shRNAs, multiple SARS-CoV-2 escape mutants quickly emerged from infected cells within 24-48 h. Importantly, such adverse viral adaptation was fully prevented with the triple-shRNA AAV vector even during long-term cultivation. In addition, AAV-SAVIOR efficiently purged SARS-CoV-2 in a new model of chronically infected human intestinal cells. Finally, intranasal AAV-SAVIOR delivery using an AAV9 capsid moderately diminished viral loads and/or alleviated disease symptoms in hACE2-transgenic or wild-type mice infected with human or mouse SARS-CoV-2 strains, respectively. Our combinatorial and customizable AAV/RNAi vector complements ongoing global efforts to control the coronavirus disease 2019 (COVID-19) pandemic and holds great potential for clinical translation as an original and flexible preventive or therapeutic antiviral measure.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Antivirales , COVID-19/prevención & control , Dependovirus , Ratones , Pandemias , Interferencia de ARN , ARN Interferente Pequeño/genética , SARS-CoV-2/genética
10.
Bioessays ; 43(3): e2000257, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33377226

RESUMEN

Emergence of the novel pathogenic coronavirus SARS-CoV-2 and its rapid pandemic spread presents challenges that demand immediate attention. Here, we describe the development of a semi-quantitative high-content microscopy-based assay for detection of three major classes (IgG, IgA, and IgM) of SARS-CoV-2 specific antibodies in human samples. The possibility to detect antibodies against the entire viral proteome together with a robust semi-automated image analysis workflow resulted in specific, sensitive and unbiased assay that complements the portfolio of SARS-CoV-2 serological assays. Sensitive, specific and quantitative serological assays are urgently needed for a better understanding of humoral immune response against the virus as a basis for developing public health strategies to control viral spread. The procedure described here has been used for clinical studies and provides a general framework for the application of quantitative high-throughput microscopy to rapidly develop serological assays for emerging virus infections.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , Inmunoensayo , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Microscopía/métodos , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/virología , Prueba de COVID-19/métodos , Técnica del Anticuerpo Fluorescente , Ensayos Analíticos de Alto Rendimiento , Humanos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Sueros Inmunes/química , Aprendizaje Automático , Sensibilidad y Especificidad
11.
Cancer Sci ; 113(5): 1575-1586, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35179814

RESUMEN

MEN1, which encodes menin protein, is the most frequently mutated gene in pancreatic neuroendocrine neoplasms (pNEN). Pleiotrophin (PTN) has been reported as a downstream factor of menin that promotes metastasis in different tumor entities. In this study, the effect of menin and its link to PTN were assessed using features of pNEN cells and the outcome of patients with pNEN. The expression levels of menin and PTN in tissues from patients with pNEN were examined using qRT-PCR and western blot and compared with their metastasis status. Functional assays, including transwell migration/invasion and scratch wound-healing assays, were performed on specifically designed CRISPR/Cas9-mediated MEN1-knockout (MEN1-KO) pNEN cell lines (BON1MEN1-KO and QGP1MEN1-KO ) to study the metastasis of pNEN. Among 30 patients with menin-negative pNEN, 21 revealed a strong protein expression of PTN. This combination was associated with metastasis and shorter disease-free survival. Accordingly, in BON1MEN1-KO and QGP1MEN1-KO cells, PTN protein expression was positively associated with enhanced cell migration and invasion, which could be reversed using PTN silencing. PTN is a predicting factor of metastatic behavior of menin-deficient-pNEN. In vitro, menin is able to both promote and suppress the metastasis of pNEN by regulating PTN expression depending on the tumoral origin of pNEN cells.


Asunto(s)
Neoplasia Endocrina Múltiple Tipo 1 , Neoplasias Pancreáticas , Biología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Humanos , Neoplasia Endocrina Múltiple Tipo 1/patología , Neoplasias Pancreáticas/patología , Factores de Transcripción/metabolismo
12.
Mol Syst Biol ; 17(7): e9833, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34309190

RESUMEN

Human intestinal epithelial cells form a primary barrier protecting us from pathogens, yet only limited knowledge is available about individual contribution of each cell type to mounting an immune response against infection. Here, we developed a framework combining single-cell RNA-Seq and highly multiplex RNA FISH and applied it to human intestinal organoids infected with human astrovirus, a model human enteric virus. We found that interferon controls the infection and that astrovirus infects all major cell types and lineages and induces expression of the cell proliferation marker MKI67. Intriguingly, each intestinal epithelial cell lineage exhibits a unique basal expression of interferon-stimulated genes and, upon astrovirus infection, undergoes an antiviral transcriptional reprogramming by upregulating distinct sets of interferon-stimulated genes. These findings suggest that in the human intestinal epithelium, each cell lineage plays a unique role in resolving virus infection. Our framework is applicable to other organoids and viruses, opening new avenues to unravel roles of individual cell types in viral pathogenesis.


Asunto(s)
Transcriptoma , Virosis , Humanos , Inmunidad , Mucosa Intestinal , Intestinos
13.
Mol Syst Biol ; 17(4): e10232, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33904651

RESUMEN

Exacerbated pro-inflammatory immune response contributes to COVID-19 pathology. However, despite the mounting evidence about SARS-CoV-2 infecting the human gut, little is known about the antiviral programs triggered in this organ. To address this gap, we performed single-cell transcriptomics of SARS-CoV-2-infected intestinal organoids. We identified a subpopulation of enterocytes as the prime target of SARS-CoV-2 and, interestingly, found the lack of positive correlation between susceptibility to infection and the expression of ACE2. Infected cells activated strong pro-inflammatory programs and produced interferon, while expression of interferon-stimulated genes was limited to bystander cells due to SARS-CoV-2 suppressing the autocrine action of interferon. These findings reveal that SARS-CoV-2 curtails the immune response and highlights the gut as a pro-inflammatory reservoir that should be considered to fully understand SARS-CoV-2 pathogenesis.


Asunto(s)
Intestinos/inmunología , SARS-CoV-2/fisiología , Análisis de la Célula Individual , COVID-19/virología , Microbioma Gastrointestinal , Humanos , Hibridación Fluorescente in Situ , Organoides/metabolismo , Análisis de Secuencia de ARN
14.
Mol Syst Biol ; 17(2): e10188, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33590968

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and has compromised economic stability. In addition to the development of an effective vaccine, it is imperative to understand how SARS-CoV-2 hijacks host cellular machineries on a system-wide scale so that potential host-directed therapies can be developed. In situ proteome-wide abundance and thermal stability measurements using thermal proteome profiling (TPP) can inform on global changes in protein activity. Here we adapted TPP to high biosafety conditions amenable to SARS-CoV-2 handling. We discovered pronounced temporal alterations in host protein thermostability during infection, which converged on cellular processes including cell cycle, microtubule and RNA splicing regulation. Pharmacological inhibition of host proteins displaying altered thermal stability or abundance during infection suppressed SARS-CoV-2 replication. Overall, this work serves as a framework for expanding TPP workflows to globally important human pathogens that require high biosafety containment and provides deeper resolution into the molecular changes induced by SARS-CoV-2 infection.


Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Patógeno , Estabilidad Proteica , SARS-CoV-2/fisiología , Proteínas Virales/metabolismo , Antivirales/farmacología , COVID-19/virología , Humanos , Proteoma , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Temperatura , Replicación Viral/efectos de los fármacos
15.
J Virol ; 93(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31375575

RESUMEN

Vesicular stomatitis Indiana virus (VSIV), formerly known as vesicular stomatitis virus (VSV) Indiana (VSVIND), is a model virus that is exceptionally sensitive to the inhibitory action of interferons (IFNs). Interferons induce an antiviral state by stimulating the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs can constrain viral replication, limit tissue tropism, reduce pathogenicity, and inhibit viral transmission. Since VSIV is used as a backbone for multiple oncolytic and vaccine strategies, understanding how ISGs restrict VSIV not only helps in understanding VSIV-induced pathogenesis but also helps us evaluate and understand the safety and efficacy of VSIV-based therapies. Thus, there is a need to identify and characterize the ISGs that possess anti-VSIV activity. Using arrayed ISG expression screening, we identified TRIM69 as an ISG that potently inhibits VSIV. This inhibition was highly specific as multiple viruses, including influenza A virus, HIV-1, Rift Valley fever virus, and dengue virus, were unaffected by TRIM69. Indeed, just one amino acid substitution in VSIV can govern sensitivity/resistance to TRIM69. Furthermore, TRIM69 is highly divergent in human populations and exhibits signatures of positive selection that are consistent with this gene playing a key role in antiviral immunity. We propose that TRIM69 is an IFN-induced inhibitor of VSIV and speculate that TRIM69 could be important in limiting VSIV pathogenesis and might influence the specificity and/or efficacy of vesiculovirus-based therapies.IMPORTANCE Vesicular stomatitis Indiana virus (VSIV) is a veterinary pathogen that is also used as a backbone for many oncolytic and vaccine strategies. In natural and therapeutic settings, viral infections like VSIV are sensed by the host, and as a result the host cells make proteins that can protect them from viruses. In the case of VSIV, these antiviral proteins constrain viral replication and protect most healthy tissues from virus infection. In order to understand how VSIV causes disease and how healthy tissues are protected from VSIV-based therapies, it is crucial that we identify the proteins that inhibit VSIV. Here, we show that TRIM69 is an antiviral defense that can potently and specifically block VSIV infection.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Estomatitis Vesicular/metabolismo , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/fisiología , Replicación Viral , Alelos , Secuencia de Aminoácidos , Animales , Antivirales/farmacología , Virus del Dengue/fisiología , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Interferones/metabolismo , Interferones/farmacología , Familia de Multigenes , Fosforilación , Transducción de Señal , Proteínas de Motivos Tripartitos/química , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Estomatitis Vesicular/genética , Estomatitis Vesicular/inmunología
16.
PLoS Pathog ; 14(11): e1007420, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30485383

RESUMEN

It is currently believed that type I and III interferons (IFNs) have redundant functions. However, the preferential distribution of type III IFN receptor on epithelial cells suggests functional differences at epithelial surfaces. Here, using human intestinal epithelial cells we could show that although both type I and type III IFNs confer an antiviral state to the cells, they do so with distinct kinetics. Type I IFN signaling is characterized by an acute strong induction of interferon stimulated genes (ISGs) and confers fast antiviral protection. On the contrary, the slow acting type III IFN mediated antiviral protection is characterized by a weaker induction of ISGs in a delayed manner compared to type I IFN. Moreover, while transcript profiling revealed that both IFNs induced a similar set of ISGs, their temporal expression strictly depended on the IFNs, thereby leading to unique antiviral environments. Using a combination of data-driven mathematical modeling and experimental validation, we addressed the molecular reason for this differential kinetic of ISG expression. We could demonstrate that these kinetic differences are intrinsic to each signaling pathway and not due to different expression levels of the corresponding IFN receptors. We report that type III IFN is specifically tailored to act in specific cell types not only due to the restriction of its receptor but also by providing target cells with a distinct antiviral environment compared to type I IFN. We propose that this specific environment is key at surfaces that are often challenged with the extracellular environment.


Asunto(s)
Interferón Tipo I/genética , Interferones/genética , Antivirales/farmacología , Línea Celular , Células Epiteliales/metabolismo , Humanos , Interferón Tipo I/metabolismo , Interferones/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Interferón/genética , Transducción de Señal/efectos de los fármacos , Interferón lambda
17.
Proc Natl Acad Sci U S A ; 114(1): E28-E36, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27974607

RESUMEN

The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) and related rhabdoviruses (e.g., rabies virus) mediate both cell attachment and membrane fusion. The reversibility of their fusogenic conformational transitions differentiates them from many other low-pH-induced viral fusion proteins. We report single-virion fusion experiments, using methods developed in previous publications to probe fusion of influenza and West Nile viruses. We show that a three-stage model fits VSV single-particle fusion kinetics: (i) reversible, pH-dependent, G-protein conformational change from the known prefusion conformation to an extended, monomeric intermediate; (ii) reversible trimerization and clustering of the G-protein fusion loops, leading to an extended intermediate that inserts the fusion loops into the target-cell membrane; and (iii) folding back of a cluster of extended trimers into their postfusion conformations, bringing together the viral and cellular membranes. From simulations of the kinetic data, we conclude that the critical number of G-protein trimers required to overcome membrane resistance is 3 to 5, within a contact zone between the virus and the target membrane of 30 to 50 trimers. This sequence of conformational events is similar to those shown to describe fusion by influenza virus hemagglutinin (a "class I" fusogen) and West Nile virus envelope protein ("class II"). Our study of VSV now extends this description to "class III" viral fusion proteins, showing that reversibility of the low-pH-induced transition and architectural differences in the fusion proteins themselves do not change the basic mechanism by which they catalyze membrane fusion.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Fusión de Membrana/fisiología , Glicoproteínas de Membrana/metabolismo , Orthomyxoviridae/metabolismo , Virus de la Estomatitis Vesicular Indiana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/metabolismo , Virus del Nilo Occidental/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/virología , Chlorocebus aethiops , Cricetinae , Colorantes Fluorescentes/química , Modelos Moleculares , Conformación Proteica , Células Vero
18.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901970

RESUMEN

Interferons (IFNs) are very powerful cytokines, which play a key role in combatting pathogen infections by controlling inflammation and immune response by directly inducing anti-pathogen molecular countermeasures. There are three classes of IFNs: type I, type II and type III. While type II IFN is specific for immune cells, type I and III IFNs are expressed by both immune and tissue specific cells. Unlike type I IFNs, type III IFNs have a unique tropism where their signaling and functions are mostly restricted to epithelial cells. As such, this class of IFN has recently emerged as a key player in mucosal immunity. Since the discovery of type III IFNs, the last 15 years of research in the IFN field has focused on understanding whether the induction, the signaling and the function of these powerful cytokines are regulated differently compared to type I IFN-mediated immune response. This review will cover the current state of the knowledge of the similarities and differences in the signaling pathways emanating from type I and type III IFN stimulation.


Asunto(s)
Interferón Tipo I/metabolismo , Interferones/metabolismo , Transducción de Señal , Animales , Biomarcadores , Activación Enzimática , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Interferón lambda
19.
Cell Microbiol ; 19(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28672089

RESUMEN

Reovirus replication occurs in the cytoplasm of the host cell, in virally induced mini-organelles called virus factories. On the basis of the serotype of the virus, the virus factories can manifest as filamentous (type 1 Lang strain) or globular structures (type 3 Dearing strain). The filamentous factories morphology is dependent on the microtubule cytoskeleton; however, the exact function of the microtubule network in virus replication remains unknown. Using a combination of fluorescent microscopy, electron microscopy, and tomography of high-pressure frozen and freeze-substituted cells, we determined the ultrastructural organisation of reovirus factories. Cells infected with the reovirus microtubule-dependent strain display paracrystalline arrays of progeny virions resulting from their tiered organisation around microtubule filaments. On the contrary, in cells infected with the microtubule-independent strain, progeny virions lacked organisation. Conversely to the microtubule-dependent strain, around half of the viral particles present in these viral factories did not contain genomes (genome-less particles). Complementarily, interference with the microtubule filaments in cells infected with the microtubule-dependent strain resulted in a significant increase of genome-less particle number. This decrease of genome packaging efficiency could be rescued by rerouting viral factories on the actin cytoskeleton. These findings demonstrate that the scaffolding properties of the microtubule, and not biochemical nature of tubulin, are critical determinants for reovirus efficient genome packaging. This work establishes, for the first time, a functional correlation between ultrastructural organisation of reovirus factories with genome packaging efficiency and provides novel information on how viruses coordinate assembly of progeny particles.


Asunto(s)
Interacciones Huésped-Patógeno , Microtúbulos/metabolismo , ARN Viral/metabolismo , Reoviridae/fisiología , Ensamble de Virus , Microscopía Electrónica , Microscopía Fluorescente , Microtúbulos/ultraestructura , ARN Viral/ultraestructura , Reoviridae/ultraestructura
20.
Biomacromolecules ; 19(8): 3212-3223, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29966082

RESUMEN

For the efficient treatment of an increasing number of diseases the development of new therapeutics as well as novel drug delivery systems is essential. Such drug delivery systems (DDS) must not only consider biodegradability and protective packaging but must also target and control the release of active substances, which is one of the most important points in DDS application. We highlight the improvement of these key aspects, the increased interaction rate of Layer-by-Layer (LbL) designed microcarriers as a promising DDS after functionalization with vesicular stomatitis virus (VSV). We make use of the unique conformational reversibility of the fusion protein of VSV as a surface functionalization of LbL microcarriers. This reversibility allows for VSV to be used both as a tool for assembly onto the DDS and as an initiator for an efficient cellular uptake. We could show that the evolutionary optimized viral fusion machinery can be successfully combined with a biophysical DDS for optimization of its cellular interaction.


Asunto(s)
Portadores de Fármacos/química , Vesiculovirus/química , Proteínas Virales de Fusión/química , Animales , Chlorocebus aethiops , Cricetinae , Cricetulus , Dióxido de Silicio/química , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA