Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511316

RESUMEN

Oxidative stress (OS)-induced mitochondrial damage is a risk factor for primary open-angle glaucoma (POAG). Mitochondria-targeted novel antioxidant therapies could unearth promising drug candidates for the management of POAG. Previously, our dual-acting hybrid molecule SA-2 with nitric oxide-donating and antioxidant activity reduced intraocular pressure and improved aqueous humor outflow in rodent eyes. Here, we examined the mechanistic role of SA-2 in trabecular meshwork (TM) cells in vitro and measured the activity of intracellular antioxidant enzymes during OS. Primary human TM cells isolated from normal (hNTM) or glaucomatous (hGTM) post-mortem donors and transformed glaucomatous TM cells (GTM-3) were used for in vitro assays. We examined the effect of SA-2 on oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in vitro using Seahorse Analyzer with or without the oxidant, tert-butyl hydroperoxide (TBHP) treatment. Concentrations of total antioxidant enzymes, catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GPx) were measured. We observed significant protection of both hNTM and hGTM cells from TBHP-induced cell death by SA-2. Antioxidant enzymes were elevated in SA-2-treated cells compared to TBHP-treated cells. In addition, SA-2 demonstrated an increase in mitochondrial metabolic parameters. Altogether, SA-2 protected both normal and glaucomatous TM cells from OS via increasing mitochondrial energy parameters and the activity of antioxidant enzymes.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Antioxidantes/metabolismo , Malla Trabecular/metabolismo , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Mitocondrias/metabolismo
2.
Mol Vis ; 28: 165-177, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36274816

RESUMEN

Purpose: Glaucoma is a neurodegenerative disease associated with elevated intraocular pressure and characterized by optic nerve axonal degeneration, cupping of the optic disc, and loss of retinal ganglion cells (RGCs). The endothelin (ET) system of vasoactive peptides (ET-1, ET-2, ET-3) and their G-protein coupled receptors (ETA and ETB receptors) have been shown to contribute to the pathophysiology of glaucoma. The purpose of this study was to determine whether administration of the endothelin receptor antagonist macitentan was neuroprotective to RGCs and optic nerve axons when administered after the onset of intraocular pressure (IOP) elevation in ocular hypertensive rats. Methods: Male and female Brown Norway rats were subjected to the Morrison model of ocular hypertension by injection of hypertonic saline through the episcleral veins. Following IOP elevation, macitentan (5 mg/kg body wt) was administered orally 3 days per week, and rats with IOP elevation were maintained for 4 weeks. RGC function was determined by pattern electroretinography (PERG) at 2 and 4 weeks post-IOP elevation. Rats were euthanized by approved humane methods, and retinal flat mounts were generated and immunostained for the RGC-selective marker Brn3a. PPD-stained optic nerve sections were imaged by confocal microscopy. RGC and axon counts were conducted in a masked manner and compared between the treatment groups. Results: Significant protection against loss of RGCs and optic nerve axons was found following oral administration of macitentan in rats with elevated IOP. In addition, a protective trend for RGC function, as measured by pattern ERG analysis, was evident following macitentan treatment. Conclusions: Macitentan treatment had a neuroprotective effect on RGCs and their axons, independent of its IOP-lowering effect, suggesting that macitentan may complement existing treatments to prevent neurodegeneration during ocular hypertension. The findings presented have implications for the use of macitentan as an oral formulation to promote neuroprotection in glaucoma patients.


Asunto(s)
Glaucoma , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Hipertensión Ocular , Masculino , Femenino , Ratas , Animales , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Roedores , Antagonistas de los Receptores de Endotelina/farmacología , Modelos Animales de Enfermedad , Glaucoma/complicaciones , Glaucoma/tratamiento farmacológico , Presión Intraocular , Hipertensión Ocular/complicaciones , Hipertensión Ocular/tratamiento farmacológico , Ratas Endogámicas BN , Axones , Endotelinas/farmacología , Administración Oral , Péptidos/farmacología
3.
Mol Vis ; 27: 37-49, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33633438

RESUMEN

Purpose: Glaucoma is a neurodegenerative disease of the eye with an estimated prevalence of more than 111.8 million patients worldwide by 2040, with at least 6 to 8 million projected to become bilaterally blind. Clinically, the current method of slowing glaucomatous vision loss is to reduce intraocular pressure (IOP). In this manuscript, we describe the in vitro cytoprotective and in vivo long lasting IOP-lowering activity of the poly D, L-lactic-co-glycolic acid (PLGA) nanoparticle-encapsulated hybrid compound SA-2, possessing nitric oxide (NO) donating and superoxide radical scavenging functionalities. Methods: Previously characterized primary human trabecular meshwork (hTM) cells were used for the study. hTM cells were treated with SA-2 (100 µM, 200 µM, and 1,000 µM), SA-2 PLGA-loaded nanosuspension (SA-2 NPs, 0.1%), or vehicle for 30 min. Cyclic guanosine monophosphate (cGMP) and super oxide dismutase (SOD) levels were analyzed using commercial kits. In another experiment, hTM cells were pretreated with tert-butyl hydrogen peroxide (TBHP, 300 µM) for 30 min followed by treatment with escalating doses of SA-2 for 24 h, and CellTiter 96 cell proliferation assay was performed. For the biodistribution study, the cornea, aqueous humor, vitreous humor, retina, choroid, and sclera were collected after 1 h of administration of a single eye drop (30 µl) of SA-2 NPs (1% w/v) formulated in PBS to rat (n = 6) eyes. Compound SA-2 was quantified using high performance liquid chromatography /mass spectrometry (HPLC/MS). For the IOP-lowering activity study, a single SA-2 NPs (1%) eye drop was instilled in normotensive rats eyes and in the IOP-elevated rat eyes (n = 3/group, in the Morrison model of glaucoma), or Ad5TGFß2-induced ocular hypertensive (OHT) mouse eyes (n = 5/group). IOP was measured at various time points up to 72 h, and the experiment was repeated in triplicate. Mouse aqueous humor outflow facility was determined with multiple flow-rate infusion and episcleral venous pressure estimated with manometry. Results: SA-2 upregulated cGMP levels (six- to ten-fold) with an half maximal effective concentration (EC50) of 20.3 µM in the hTM cells and simultaneously upregulated (40-fold) the SOD enzyme when compared with the vehicle-treated hTM cells. SA-2 also protected hTM cells from TBHP-induced decrease in cell survival with an EC50 of 0.38 µM. A single dose of slow-release SA-2 NPs (1% w/v) delivered as an eye drop significantly lowered IOP (by 30%) in normotensive and OHT rodent eyes after 3 h post-dose, with the effect lasting up to 72 h. A statistically significant increase in aqueous outflow facility and a decrease in episcleral venous pressure was observed in rodents at this dose at 54 h. Conclusions: Hybrid compound SA-2 upregulated cGMP in hTM cells, increased outflow facility and decreased IOP in rodent models of OHT. Compound SA-2 possessing an antioxidant moiety provided additive cytoprotective activity to oxidatively stressed hTM cells by scavenging reactive oxygen species (ROS) and increasing SOD enzyme activity. Additionally, the PLGA nanosuspension formulation (SA-2 NPs) provided longer duration of IOP-lowering activity (up to 3 days) in comparison with the free non-encapsulated SA-2 drug. The data have implications for developing novel, non-prostaglandin therapeutics for IOP-lowering and cytoprotective effects with the possibility of an eye drop dosing regimen of once every 3 days for patients with glaucoma.


Asunto(s)
Antihipertensivos/uso terapéutico , Modelos Animales de Enfermedad , Presión Intraocular/efectos de los fármacos , Hipertensión Ocular/tratamiento farmacológico , Piperidinas/uso terapéutico , Malla Trabecular/efectos de los fármacos , Administración Oftálmica , Adulto , Anciano de 80 o más Años , Animales , Antihipertensivos/farmacocinética , Antihipertensivos/farmacología , Humor Acuoso/fisiología , Disponibilidad Biológica , Células Cultivadas , GMP Cíclico/metabolismo , Portadores de Fármacos , Femenino , Depuradores de Radicales Libres/farmacocinética , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Glicolatos/química , Humanos , Masculino , Ratones Endogámicos C57BL , Donantes de Óxido Nítrico/farmacocinética , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Hipertensión Ocular/metabolismo , Soluciones Oftálmicas , Piperidinas/farmacocinética , Piperidinas/farmacología , Ratas , Ratas Endogámicas BN , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Esclerótica/irrigación sanguínea , Superóxido Dismutasa/metabolismo , Distribución Tisular , Malla Trabecular/metabolismo , Presión Venosa/fisiología
4.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151061

RESUMEN

BACKGROUND: Glaucoma is an optic neuropathy and involves the progressive degeneration of retinal ganglion cells (RGCs), which leads to blindness in patients. We investigated the role of the neuroprotective kynurenic acid (KYNA) in RGC death against retinal ischemia/reperfusion (I/R) injury. METHODS: We injected KYNA intravenously or intravitreally to mice. We generated a knockout mouse strain of kynurenine 3-monooxygenase (KMO), an enzyme in the kynurenine pathway that produces neurotoxic 3-hydroxykynurenine. To test the effect of mild hyperglycemia on RGC protection, we used streptozotocin (STZ) induced diabetic mice. Retinal I/R injury was induced by increasing intraocular pressure for 60 min followed by reperfusion and RGC numbers were counted in the retinal flat mounts. RESULTS: Intravenous or intravitreal administration of KYNA protected RGCs against I/R injury. The I/R injury caused a greater loss of RGCs in wild type than in KMO knockout mice. KMO knockout mice had mildly higher levels of fasting blood glucose than wild type mice. Diabetic mice showed significantly lower loss of RGCs when compared with non-diabetic mice subjected to I/R injury. CONCLUSION: Together, our study suggests that the absence of KMO protects RGCs against I/R injury, through mechanisms that likely involve higher levels of KYNA and glucose.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Modelos Animales de Enfermedad , Glaucoma/prevención & control , Ácido Quinurénico/farmacología , Quinurenina 3-Monooxigenasa/fisiología , Daño por Reperfusión/complicaciones , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Antagonistas de Aminoácidos Excitadores/farmacología , Glaucoma/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
5.
BMC Neurosci ; 18(1): 27, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28249604

RESUMEN

BACKGROUND: Primary open angle glaucoma is a heterogeneous group of optic neuropathies that results in optic nerve degeneration and a loss of retinal ganglion cells (RGCs) ultimately causing blindness if allowed to progress. Elevation of intraocular pressure (IOP) is the most attributable risk factor for developing glaucoma and lowering of IOP is currently the only available therapy. However, despite lowering IOP, neurodegenerative effects persist in some patients. Hence, it would be beneficial to develop approaches to promote neuroprotection of RGCs in addition to IOP lowering therapies. The endothelin system is a key target for intervention against glaucomatous neurodegeneration. The endothelin family of peptides and receptors, particularly endothelin-1 (ET-1) and endothelin B (ETB) receptor, has been shown to have neurodegenerative roles in glaucoma. The purpose of this study was to examine changes in endothelin A (ETA) receptor protein expression in the retinas of adult male Brown Norway rats following IOP elevation by the Morrison's model of ocular hypertension and the impact of ETA receptor overexpression on RGC viability in vitro. RESULTS: IOP elevation was carried out in one eye of Brown Norway rats by injection of hypertonic saline through episcleral veins. After 2 weeks of IOP elevation, immunohistochemical analysis of retinal sections from rat eyes showed an increasing trend in immunostaining for ETA receptors in multiple retinal layers including the inner plexiform layer, ganglion cell layer and outer plexiform layer. Following 4 weeks of IOP elevation, a significant increase in immunostaining for ETA receptor expression was found in the retina, primarily in the inner plexiform layer and ganglion cells. A modest increase in staining for ETA receptors was also found in the outer plexiform layer in the retina of rats with IOP elevation. Cell culture studies showed that overexpression of ETA receptors in 661W cells as well as primary RGCs decreases cell viability, compared to empty vector transfected cells. Adeno-associated virus mediated overexpression of the ETA receptor produced an increase in the ETB receptor in primary RGCs. CONCLUSIONS: Elevated IOP results in an appreciable change in ETA receptor expression in the retina. Overexpression of the ETA receptor results in an overall decrease in cell viability, accompanied by an increase in ETB receptor levels, suggesting the involvement of both ETA and ETB receptors in mediating cell death. These findings raise possibilities for the development of ETA/ETB dual receptor antagonists as neuroprotective treatments for glaucomatous neuropathy.


Asunto(s)
Glaucoma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Receptor de Endotelina A/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos , Glaucoma/patología , Presión Intraocular/fisiología , Masculino , Enfermedades Neurodegenerativas/patología , Neuroprotección/fisiología , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Receptor de Endotelina A/genética , Receptor de Endotelina B/metabolismo , Células Ganglionares de la Retina/patología , Transfección , Regulación hacia Arriba
6.
Nutr Neurosci ; 20(5): 273-283, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26651837

RESUMEN

OBJECTIVES: Alzheimer's disease is a progressive neurodegenerative disease characterized by loss of hippocampal neurons leading to memory deficits and cognitive decline. Studies suggest that levels of the vasoactive peptide endothelin-1 (ET-1) are increased in the brain tissue of Alzheimer's patients. Curcumin, the main ingredient of the spice turmeric, has been shown to have anti-inflammatory, anti-cancer, and neuroprotective effects. However, the mechanisms underlying some of these beneficial effects are not completely understood. The objective of this study was to determine if curcumin could protect hippocampal neurons from ET-1 mediated cell death and examine the involvement of c-Jun in this pathway. METHODS: Primary hippocampal neurons from rat pups were isolated using a previously published protocol. Viability of the cells was measured by the live/dead assay. Immunoblot and immunohistochemical analyses were performed to analyze c-Jun levels in hippocampal neurons treated with either ET-1 or a combination of ET-1 and curcumin. Apoptotic changes were evaluated by immunoblot detection of cleaved caspase-3, cleaved fodrin, and a caspase 3/7 activation assay. RESULTS: ET-1 treatment produced a 2-fold increase in the levels of c-Jun as determined by an immunoblot analysis in hippocampal neurons. Co-treatment with curcumin significantly attenuated the ET-1 mediated increase in c-Jun levels. ET-1 caused increased neuronal cell death of hippocampal neurons indicated by elevation of cleaved caspase-3, cleaved fodrin and an increased activity of caspases 3 and 7 which was attenuated by co-treatment with curcumin. Blockade of JNK, an upstream effector of c-Jun by specific inhibitor SP600125 did not fully protect from ET-1 mediated activation of pro-apoptotic enzymes in primary hippocampal cells. DISCUSSION: Our data suggests that one mechanism by which curcumin protects against ET-1-mediated cell death is through blocking an increase in c-Jun levels. Other possible mechanisms include decreasing pro-apoptotic signaling activated by ET-1 in primary hippocampal neurons.


Asunto(s)
Muerte Celular/efectos de los fármacos , Curcumina/farmacología , Endotelina-1/farmacología , Hipocampo/citología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores , Enfermedad de Alzheimer , Animales , Apoptosis/efectos de los fármacos , Proteínas Portadoras/análisis , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Células Cultivadas , Hipocampo/química , Proteínas de Microfilamentos/análisis , Neuronas/química , Proteínas Proto-Oncogénicas c-jun/análisis , Proteínas Proto-Oncogénicas c-jun/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Transducción de Señal
7.
Mol Vis ; 22: 1048-61, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27587945

RESUMEN

PURPOSE: Brn3b is a class IV POU domain transcription factor that plays an important role in the development of retinal ganglion cells (RGCs), RGC survival, and particularly axon growth and pathfinding. Our previous study demonstrated that recombinant adenoassociated virus serotype 2 (rAAV-2)-mediated overexpression of Brn3b in RGCs promoted neuroprotection in a rodent model of glaucoma. However, the mechanisms underlying neuroprotection of RGCs in rats overexpressing Brn3b in animal models of glaucoma remain largely unknown. The goal of this study was to understand some of the mechanisms underlying the neuroprotection of RGCs overexpressing Brn3b during intraocular pressure (IOP) elevation in Brown Norway rats. METHODS: One eye of Brown Norway rats (Rattus norvegicus) was injected with an AAV construct encoding either green fluorescent protein (GFP; recombinant adenoassociated virus-green fluorescent protein, rAAV-hSyn-GFP) or Brn3b (rAAV-hSyn-Brn3b). Expression of antiapoptotic proteins, including B cell lymphoma/leukemia-2 (Bcl-2) family proteins (Bcl-2 and Bcl-xL), and p-AKT, was observed following immunostaining of rat retinas that overexpress Brn3b. In a different set of experiments, intraocular pressure was elevated in one eye of Brown Norway rats, which was followed by intravitreal injection with AAV constructs encoding either GFP (rAAV-CMV-GFP) or Brn3b (rAAV-CMV-Brn3b). Retinal sections were stained for prosurvival factors, including Bcl-2, Bcl-XL, and p-AKT. RESULTS: AAV-mediated expression of transcription factor Brn3b promoted statistically significant upregulation of the Bcl-2 protein and increased expression of p-AKT in RGCs of Brown Norway rats. In addition, following IOP elevation, AAV-mediated Brn3b expression also statistically significantly increased levels of Bcl-2 in the RGC layer in Brown Norway rats. CONCLUSIONS: Adenoassociated virus-mediated Brn3b protein overexpression may promote neuroprotection by upregulating key antiapoptotic proteins, including Bcl-2, Bcl-xL, and p-AKT, in animal models of glaucoma.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hipertensión Ocular/prevención & control , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción Brn-3B/genética , Proteína bcl-X/metabolismo , Animales , Supervivencia Celular/fisiología , Dependovirus/genética , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Presión Intraocular/fisiología , Inyecciones Intravítreas , Masculino , Fármacos Neuroprotectores , Hipertensión Ocular/metabolismo , Plásmidos/genética , Ratas , Ratas Endogámicas BN , Regulación hacia Arriba
8.
Bioorg Med Chem Lett ; 26(5): 1490-4, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26832784

RESUMEN

Synthesis and bioactivity of novel dual acting nitric oxide releasing and reactive oxygen scavenging hybrid compound SA-2 is described. The hybrid molecule SA-2 significantly increased the superoxide dismutase enzyme level and protected the photoreceptor cells from H2O2 induced oxidative stress. Synthesis of ocular esterase sensitive aceloxy alkyl carbamate prodrug SA-4 with improved aqueous half-life is achieved to aid topical ocular formulation. This class of hybrid molecule and prodrug may have dual potential of improved IOP lowering and neuroprotection in glaucomatous optic neuropathy.


Asunto(s)
Diseño de Fármacos , Glaucoma/tratamiento farmacológico , Enfermedades del Nervio Óptico/tratamiento farmacológico , Profármacos/uso terapéutico , Sidnonas/síntesis química , Sidnonas/uso terapéutico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glaucoma/metabolismo , Glaucoma/patología , Humanos , Peróxido de Hidrógeno/antagonistas & inhibidores , Peróxido de Hidrógeno/farmacología , Presión Intraocular/efectos de los fármacos , Estructura Molecular , Óxido Nítrico/metabolismo , Enfermedades del Nervio Óptico/metabolismo , Enfermedades del Nervio Óptico/patología , Estrés Oxidativo/efectos de los fármacos , Profármacos/síntesis química , Profármacos/química , Profármacos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Sidnonas/química , Sidnonas/farmacología
9.
Cell Mol Neurobiol ; 35(6): 769-83, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25786379

RESUMEN

Transcription factor Brn-3b plays a key role in retinal ganglion cell differentiation, survival, and axon outgrowth during development. However, the precise role of Brn-3b in the normal adult retina as well as during neurodegeneration is unclear. In the current study, the effect of overexpression of Brn-3b was assessed in vitro, in PC12 cells under conditions of normoxia and hypoxia. Immunoblot analysis showed that overexpression of Brn-3b in PC12 cells as well as 661W cells produced significant increase in the growth cone marker, growth-associated protein-43 (GAP-43), and acetylated-tubulin (ac-TUBA). In addition, an increased immunostaining for GAP-43 and ac-TUBA was observed in PC12 cells overexpressing Brn-3b, which was accompanied by a marked increase in neurite outgrowth, compared to PC12 cells overexpressing the empty vector. In separate experiments, one set of PC12 cells transfected either with a Brn-3b expression vector or an empty vector was subjected to conditions of hypoxia for 2 h, while another set of similarly transfected PC12 cells was maintained in normoxic conditions. It was found that the upregulation of GAP-43 and ac-TUBA in PC12 cells overexpressing Brn-3b under conditions of normoxia was sustained under conditions of hypoxia. Immunocytochemical analysis revealed not only an upregulation of GAP-43 and ac-TUBA, but also increased neurite outgrowth in PC12 cells transfected with Brn-3b as compared to PC12 cells transfected with empty vector in both normoxia and hypoxia. The findings have implications for a potential role of Brn-3b in neurodegenerative diseases in which hypoxia/ischemia contribute to pathophysiology of the disease.


Asunto(s)
Diferenciación Celular/genética , Neuritas/fisiología , Neurogénesis/genética , Factor de Transcripción Brn-3B/genética , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/fisiología , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Hipoxia de la Célula/genética , Células Cultivadas , Ratones , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neurogénesis/efectos de los fármacos , Oxígeno/farmacología , Células PC12 , Ratas , Regulación hacia Arriba/genética
10.
Methods ; 66(2): 292-8, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23994243

RESUMEN

Applications of fluorescence based imaging techniques for detection in cellular and tissue environments are severely limited by autofluorescence of endogenous components of cells, tissue, and the fixatives used in sample processing. To achieve sufficient signal-to-background ratio, a high concentration of the probe needs to be used which is not always feasible. Since typically autofluorescence is in the nanosecond range, long-lived fluorescence probes in combination with time-gated detection can be used for suppression of unwanted autofluorescence. Unfortunately, this requires the sacrifice of the large portion the probe signal in order to sufficiently filter the background. We report a simple and practical approach to achieve a many-fold increase in the intensity of a long-lived probe without increasing the background fluorescence. Using controllable, well separated bursts of closely spaced laser excitation pulses, we are able to highly increase the fluorescence signal of a long-lived marker over the endogenous fluorescent background and scattering, thereby greatly increasing detection sensitivity. Using a commercially available confocal microscopy system equipped with a laser diode and time correlated single photon counting (TCSPC) detection, we are able to enhance the signal of a long-lived Ruthenium (Ru)-based probe by nearly an order of magnitude. We used 80 MHz bursts of pulses (12.5 ns pulse separation) repeated with a 320 kHz repetition rate as needed to adequately image a dye with a 380 ns lifetime. Just using 10 pulses in the burst increases the Ru signal almost 10-fold without any increase in the background signal.


Asunto(s)
Imagen Óptica/métodos , Animales , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Ratas , Células Ganglionares de la Retina/metabolismo , Relación Señal-Ruido , Tubulina (Proteína)/metabolismo
11.
Cell Death Discov ; 10(1): 305, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942762

RESUMEN

This study assesses the neuroprotective potential of CPP-P1, a conjugate of an anti-apoptotic peptain-1 (P1) and a cell-penetrating peptide (CPP) in in vitro, in vivo, and ex vivo glaucoma models. Primary retinal ganglion cells (RGCs) were subjected to either neurotrophic factor (NF) deprivation for 48 h or endothelin-3 (ET-3) treatment for 24 h and received either CPP-P1 or vehicle. RGC survival was analyzed using a Live/Dead assay. Axotomized human retinal explants were treated with CPP-P1 or vehicle for seven days, stained with RGC marker RBPMS, and RGC survival was analyzed. Brown Norway (BN) rats with elevated intraocular pressure (IOP) received weekly intravitreal injections of CPP-P1 or vehicle for six weeks. RGC function was evaluated using a pattern electroretinogram (PERG). RGC and axonal damage were also assessed. RGCs from ocular hypertensive rats treated with CPP-P1 or vehicle for seven days were isolated for transcriptomic analysis. RGCs subjected to 48 h of NF deprivation were used for qPCR target confirmation. NF deprivation led to a significant loss of RGCs, which was markedly reduced by CPP-P1 treatment. CPP-P1 also decreased ET-3-mediated RGC death. In ex vivo human retinal explants, CPP-P1 decreased RGC loss. IOP elevation resulted in significant RGC loss in mid-peripheral and peripheral retinas compared to that in naive rats, which was significantly reduced by CPP-P1 treatment. PERG amplitude decline in IOP-elevated rats was mitigated by CPP-P1 treatment. Following IOP elevation in BN rats, the transcriptomic analysis showed over 6,000 differentially expressed genes in the CPP-P1 group compared to the vehicle-treated group. Upregulated pathways included CREB signaling and synaptogenesis. A significant increase in Creb1 mRNA and elevated phosphorylated Creb were observed in CPP-P1-treated RGCs. Our study showed that CPP-P1 is neuroprotective through CREB signaling enhancement in several settings that mimic glaucomatous conditions. The findings from this study are significant as they address the pressing need for the development of efficacious therapeutic strategies to maintain RGC viability and functionality associated with glaucoma.

12.
Exp Eye Res ; 107: 21-31, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23183135

RESUMEN

Sigma-1 receptors (σ-1rs) exert neuroprotective effects on retinal ganglion cells (RGCs) both in vivo and in vitro. This receptor has unique properties through its actions on several voltage-gated and ligand-gated channels. The purpose of this study was to investigate the role that σ-1rs play in regulating cell calcium dynamics through activated L-type Voltage Gated Calcium Channels (L-type VGCCs) in purified RGCs. RGCs were isolated from P3-P7 Sprague-Dawley rats and purified by sequential immunopanning using a Thy1.1 antibody. Calcium imaging was used to measure changes in intracellular calcium after depolarizing the cells with potassium chloride (KCl) in the presence or absence of two σ-1r agonists [(+)-SKF10047 and (+)-Pentazocine], one σ-1r antagonist (BD1047), and one L-type VGCC antagonist (Verapamil). Finally, co-localization studies were completed to assess the proximity of σ-1r with L-type VGCCs in purified RGCs. VGCCs were activated using KCl (20 mM). Pre-treatment with a known L-type VGCC blocker demonstrated a 57% decrease of calcium ion influx through activated VGCCs. Calcium imaging results also demonstrated that σ-1r agonists, (+)-N-allylnormetazocine hydrochloride [(+)-SKF10047] and (+)-Pentazocine, inhibited calcium ion influx through activated VGCCs. Antagonist treatment using BD1047 demonstrated a potentiation of calcium ion influx through activated VGCCs and abolished all inhibitory effects of the σ-1r agonists on VGCCs, implying that these ligands were acting through the σ-1r. An L-type VGCC blocker (Verapamil) also inhibited KCl activated VGCCs and when combined with the σ-1r agonists there was not a further decline in calcium entry suggesting similar mechanisms. Lastly, co-localization studies demonstrated that σ-1rs and L-type VGCCs are co-localized in purified RGCs. Taken together, these results indicated that σ-1r agonists can inhibit KCl induced calcium ion influx through activated L-type VGCCs in purified RGCs. This is the first report of attenuation of L-type VGCC signaling through the activation of σ-1rs in purified RGCs. The ability of σ-1rs to co-localize with L-type VGCCs in purified RGCs implied that these two proteins are in close proximity to each other and that such interactions regulate L-type VGCCs.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Receptores sigma/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Animales Recién Nacidos , Western Blotting , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/fisiología , Células Cultivadas , Etilenodiaminas/farmacología , Técnica del Anticuerpo Fluorescente Indirecta , Fura-2/análogos & derivados , Fura-2/metabolismo , Microscopía Fluorescente , Pentazocina/farmacología , Fenazocina/análogos & derivados , Fenazocina/farmacología , Ratas , Ratas Sprague-Dawley , Receptores sigma/agonistas , Receptores sigma/antagonistas & inhibidores , Células Ganglionares de la Retina/metabolismo , Verapamilo/farmacología , Receptor Sigma-1
13.
Anal Bioanal Chem ; 405(6): 2065-75, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23254457

RESUMEN

Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background.


Asunto(s)
Artefactos , Colorantes Fluorescentes/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Nervio Óptico/ultraestructura , Retina/ultraestructura , Animales , Colorantes Fluorescentes/análisis , Compuestos Heterocíclicos de 4 o más Anillos/análisis , Microscopía Fluorescente , Microtomía , Imagen Molecular/métodos , Fotones , Ratas , Relación Señal-Ruido , Espectrometría de Fluorescencia/métodos , Factores de Tiempo
14.
Front Neurosci ; 17: 1198343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250427

RESUMEN

Glaucoma is a leading cause of blindness worldwide, commonly associated with elevated intraocular pressure (IOP), leading to degeneration of the optic nerve and death of retinal ganglion cells, the output neurons in the eye. In recent years, many studies have implicated mitochondrial dysfunction as a crucial player in glaucomatous neurodegeneration. Mitochondrial function has been an increasingly researched topic in glaucoma, given its vital role in bioenergetics and propagation of action potentials. One of the most metabolically active tissues in the body characterized by high oxygen consumption is the retina, particularly the retinal ganglion cells (RGCs). RGCs, which have long axons that extend from the eyes to the brain, rely heavily on the energy generated by oxidative phosphorylation for signal transduction, rendering them more vulnerable to oxidative damage. In various glaucoma models, mitochondrial dysfunction and stress from protein aggregates in the endoplasmic reticulum (ER) have been observed in the RGCs. However, it has been shown that the two organelles are connected through a network called mitochondria-associated ER membranes (MAMs); hence this crosstalk in a pathophysiological condition such as glaucoma should be evaluated. Here, we review the current literature suggestive of mitochondrial and ER stress related to glaucoma, indicating potential cross-signaling and the potential roles of MAMs.

15.
Front Neurosci ; 17: 1202167, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928737

RESUMEN

Efficient cellular communication is essential for the brain to regulate diverse functions like muscle contractions, memory formation and recall, decision-making, and task execution. This communication is facilitated by rapid signaling through electrical and chemical messengers, including voltage-gated ion channels and neurotransmitters. These messengers elicit broad responses by propagating action potentials and mediating synaptic transmission. Calcium influx and efflux are essential for releasing neurotransmitters and regulating synaptic transmission. Mitochondria, which are involved in oxidative phosphorylation, and the energy generation process, also interact with the endoplasmic reticulum to store and regulate cytoplasmic calcium levels. The number, morphology, and distribution of mitochondria in different cell types vary based on energy demands. Mitochondrial damage can cause excess reactive oxygen species (ROS) generation. Mitophagy is a selective process that targets and degrades damaged mitochondria via autophagosome-lysosome fusion. Defects in mitophagy can lead to a buildup of ROS and cell death. Numerous studies have attempted to characterize the relationship between mitochondrial dysfunction and calcium dysregulation in neurodegenerative diseases such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic lateral sclerosis, spinocerebellar ataxia, and aging. Interventional strategies to reduce mitochondrial damage and accumulation could serve as a therapeutic target, but further research is needed to unravel this potential. This review offers an overview of calcium signaling related to mitochondria in various neuronal cells. It critically examines recent findings, exploring the potential roles that mitochondrial dysfunction might play in multiple neurodegenerative diseases and aging. Furthermore, the review identifies existing gaps in knowledge to guide the direction of future research.

16.
Front Neurosci ; 17: 1299552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965225

RESUMEN

Neurons in the central nervous system are among the most metabolically active cells in the body, characterized by high oxygen consumption utilizing glucose both aerobically and anaerobically. Neurons have an abundance of mitochondria which generate adequate ATP to keep up with the high metabolic demand. One consequence of the oxidative phosphorylation mechanism of ATP synthesis, is the generation of reactive oxygen species which produces cellular injury as well as damage to mitochondria. Mitochondria respond to injury by fusion which serves to ameliorate the damage through genetic complementation. Mitochondria also undergo fission to meet an increased energy demand. Loss of mitochondria is also compensated by increased biogenesis to generate new mitochondria. Damaged mitochondria are removed by mitophagy, an autophagic process, in which damaged mitochondria are surrounded by a membrane to form an autophagosome which ultimately fuses with the lysosome resulting in degradation of faulty mitochondria. Dysregulation of mitophagy has been reported in several central nervous system disorders, including, Alzheimer's disease and Parkinson's disease. Recent studies point to aberrant mitophagy in ocular neurodegenerative disorders which could be an important contributor to the disease etiology/pathology. This review article highlights some of the recent findings that point to dysregulation of mitophagy and it's underlying mechanisms in ocular neurodegenerative diseases, including, glaucoma, age-related macular degeneration and diabetic retinopathy.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38464735

RESUMEN

Glaucoma is a chronic and progressive eye disease, commonly associated with elevated intraocular pressure (IOP) and characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells (RGCs). The pathological changes in glaucoma are triggered by multiple mechanisms and both mechanical effects and vascular factors are thought to contribute to the etiology of glaucoma. Various studies have shown that endothelin-1 (ET-1), a vasoactive peptide, acting through its G protein coupled receptors, ETA and ETB, plays a pathophysiologic role in glaucoma. However, the mechanisms by which ET-1 contribute to neurodegeneration remain to be completely understood. Our laboratory and others demonstrated that macitentan (MAC), a pan endothelin receptor antagonist, has neuroprotective effects in rodent models of IOP elevation. The current study aimed to determine if oral administration of a dual endothelin antagonist, macitentan, could promote neuroprotection in an acute model of intravitreal administration of ET-1. We demonstrate that vasoconstriction following the intravitreal administration of ET-1 was attenuated by dietary administration of the ETA/ETB dual receptor antagonist, macitentan (5 mg/kg body weight) in retired breeder Brown Norway rats. ET-1 intravitreal injection produced a 40% loss of RGCs, which was significantly lower in macitentan-treated rats. We also evaluated the expression levels of glial fibrillary acidic protein (GFAP) at 24 h and 7 days post intravitreal administration of ET-1 in Brown Norway rats as well as following ET-1 treatment in cultured human optic nerve head astrocytes. We observed that at the 24 h time point the expression levels of GFAP was upregulated (indicative of glial activation) following intravitreal ET-1 administration in both retina and optic nerve head regions. However, following macitentan administration for 7 days after intravitreal ET-1 administration, we observed an upregulation of GFAP expression, compared to untreated rats injected intravitreally with ET-1 alone. Macitentan treatment in ET-1 administered rats showed protection of RGC somas but was not able to preserve axonal integrity and functionality. The endothelin receptor antagonist, macitentan, has neuroprotective effects in the retinas of Brown Norway rats acting through different mechanisms, including enhancement of RGC survival and reduction of ET-1 mediated vasoconstriction.

18.
Cells ; 11(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36497005

RESUMEN

The mechanisms underlying the neuroprotective effects of the hybrid antioxidant-nitric oxide donating compound SA-2 in retinal ganglion cell (RGC) degeneration models were evaluated. The in vitro trophic factor (TF) deprivation model in primary rat RGCs and ex vivo human retinal explants were used to mimic glaucomatous neurodegeneration. Cell survival was assessed after treatment with vehicle or SA-2. In separate experiments, tert-Butyl hydroperoxide (TBHP) and endothelin-3 (ET-3) were used in ex vivo rat retinal explants and primary rat RGCs, respectively, to induce oxidative damage. Mitochondrial and intracellular reactive oxygen species (ROS) were assessed following treatments. In the TF deprivation model, SA-2 treatment produced a significant decrease in apoptotic and dead cell counts in primary RGCs and a significant increase in RGC survival in ex vivo human retinal explants. In the oxidative stress-induced models, a significant decrease in the production of ROS was observed in the SA-2-treated group compared to the vehicle-treated group. Compound SA-2 was neuroprotective against various glaucomatous insults in the rat and human RGCs by reducing apoptosis and decreasing ROS levels. Amelioration of mitochondrial and cellular oxidative stress by SA-2 may be a potential therapeutic strategy for preventing neurodegeneration in glaucomatous RGCs.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Humanos , Ratas , Animales , Roedores , Neuroprotección , Glaucoma/tratamiento farmacológico , Supervivencia Celular
19.
Cell Death Dis ; 13(11): 958, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379926

RESUMEN

Ocular hypertension is a significant risk factor for vision loss in glaucoma due to the death of retinal ganglion cells (RGCs). This study investigated the effects of the antiapoptotic peptides peptain-1 and peptain-3a on RGC death in vitro in rat primary RGCs and in mouse models of ocular hypertension. Apoptosis was induced in primary rat RGCs by trophic factor deprivation for 48 h in the presence or absence of peptains. The effects of intravitreally injected peptains on RGC death were investigated in mice subjected to retinal ischemic/reperfusion (I/R) injury and elevated intraocular pressure (IOP). I/R injury was induced in mice by elevating the IOP to 120 mm Hg for 1 h, followed by rapid reperfusion. Ocular hypertension was induced in mice by injecting microbeads (MB) or silicone oil (SO) into the anterior chamber of the eye. Retinal flatmounts were immunostained with RGC and activated glial markers. Effects on anterograde axonal transport were determined by intravitreal injection of cholera toxin-B. Peptain-1 and peptain-3a inhibited neurotrophic factor deprivation-mediated RGC apoptosis by 29% and 35%, respectively. I/R injury caused 52% RGC loss, but peptain-1 and peptain-3a restricted RGC loss to 13% and 16%, respectively. MB and SO injections resulted in 31% and 36% loss in RGCs following 6 weeks and 4 weeks of IOP elevation, respectively. Peptain-1 and peptain-3a inhibited RGC death; the loss was only 4% and 12% in MB-injected eyes and 16% and 15% in SO-injected eyes, respectively. Anterograde transport was defective in eyes with ocular hypertension, but this defect was substantially ameliorated in peptain-injected eyes. Peptains suppressed ocular hypertension-mediated retinal glial activation. In summary, our results showed that peptains block RGC somal and axonal damage and neuroinflammation in animal models of glaucoma. We propose that peptains have the potential to be developed as therapeutics against neurodegeneration in glaucoma.


Asunto(s)
Glaucoma , Hipertensión Ocular , Ratas , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Neuroprotección , Presión Intraocular , Hipertensión Ocular/complicaciones , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/metabolismo , Glaucoma/metabolismo , Modelos Animales de Enfermedad
20.
Invest Ophthalmol Vis Sci ; 62(6): 13, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33978676

RESUMEN

Purpose: The goal of this study was to determine whether JNK2 played a causative role in endothelin-mediated loss of RGCs in mice. Methods: JNK2-/- and wild type (C57BL/6) mice were intravitreally injected in one eye with 1 nmole of ET-1, whereas the contralateral eye was injected with the vehicle. At two time points (two hours and 24 hours) after the intravitreal injections, mice were euthanized, and phosphorylated c-Jun was assessed in retinal sections. In a separate set of experiments, JNK2-/- and wild type mice were intravitreally injected with either 1 nmole of ET-1 or its vehicle and euthanized seven days after injection. Retinal flat mounts were stained with antibodies to the RGC marker, Brn3a, and surviving RGCs were quantified. Axonal degeneration was assessed in paraphenylenediamine stained optic nerve sections. Results: Intravitreal ET-1 administration produced a significant increase in immunostaining for phospho c-Jun in wild type mice, which was appreciably lower in the JNK2 -/- mice. A significant (P < 0.05) 26% loss of RGCs was found in wild type mice, seven days after injection with ET-1. JNK2-/- mice showed a significant protection from RGC loss following ET-1 administration, compared to wild type mice injected with ET-1. A significant decrease in axonal counts and an increase in the collapsed axons was found in ET-1 injected wild type mice eyes. Conclusions: JNK2 appears to play a major role in ET-1 mediated loss of RGCs in mice. Neuroprotective effects in JNK2-/- mice following ET-1 administration occur mainly in the soma and not in the axons of RGCs.


Asunto(s)
Endotelina-1/toxicidad , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Degeneración Retiniana/inducido químicamente , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Axones/patología , Biomarcadores/metabolismo , Supervivencia Celular , Femenino , Inmunohistoquímica , Inyecciones Intravítreas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nervio Óptico/patología , Fosforilación , Degeneración Retiniana/enzimología , Células Ganglionares de la Retina/enzimología , Factor de Transcripción Brn-3A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA