Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576098

RESUMEN

The anionic cobaltabis (dicarbollide) [3,3'-Co(1,2-C2B9H11)2]-, [o-COSAN]-, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]- could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells. BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons. Since Na[o-COSAN] displays a strong and characteristic ν(B-H) frequency in the infrared range 2.600-2.500 cm-1, we studied the uptake of Na[o-COSAN] followed by its interaction with biomolecules and its cellular biodistribution in two different glioma initiating cells (GICs), mesenchymal and proneural respectively, by using Synchrotron Radiation-Fourier Transform Infrared (FTIR) micro-spectroscopy (SR-FTIRM) facilities at the MIRAS Beamline of ALBA synchrotron light source. The spectroscopic data analysis from the bands in the regions of DNA, proteins, and lipids permitted to suggest that after its cellular uptake, Na[o-COSAN] strongly interacts with DNA strings, modifies proteins secondary structure and also leads to lipid saturation. The mapping suggests the nuclear localization of [o-COSAN]-, which according to reported Monte Carlo simulations may result in a more efficient cell-killing effect compared to that in a uniform distribution within the entire cell. In conclusion, we show pieces of evidence that at low doses, [o-COSAN]- translocates GIC cells' membranes and it alters the physiology of the cells, suggesting that Na[o-COSAN] is a promising agent to BNCT for glioblastoma cells.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Células Madre Neoplásicas/patología , Compuestos Organometálicos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Sincrotrones , Línea Celular Tumoral , ADN/análisis , Humanos , Cinética , Lípidos/análisis , Análisis Multivariante , Células Madre Neoplásicas/metabolismo , Fenotipo , Análisis de Componente Principal , Proteínas/análisis
2.
Gynecol Oncol ; 132(1): 211-20, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24262875

RESUMEN

OBJECTIVE: The objective of this study is to chemosensitize ovarian cancer (OVCa) cells to cisplatin (CDDP) using an inhibitor of Survivin, YM155. The efficacy of YM155 in combination with CDDP was determined in vitro, ex vivo and in vivo. METHODS: Human OVCa cell lines A2780p and their cisplatin-resistant derivative A2780cis, were treated with CDDP, YM155, and the combined treatment (YM155+CDDP), and cell viability, mRNA and protein expression levels, cell-cycle distribution, and DNA damage were then evaluated. Furthermore, the efficacy of YM155 combined with CDDP was further examined in established primary cell cultures and xenograft models. RESULTS: The combination of YM155 with CDDP induced G2/M cell cycle arrest and apoptosis, increased DNA damage, and decreased Survivin levels, especially in A2780cis CDDP-resistant cells. Additionally, YM155 in combination with CDDP sensitized primary cell cultures to CDDP. Studies in vivo showed how this combination significantly decreased the tumor size of OVCa xenografts. CONCLUSIONS: Our results demonstrate that in OVCa cells the expression of Survivin did not affect their sensitivity to YM155, suggesting that Survivin was not the only target of YM155. The combination of YM155 with CDDP could be a good option for therapy of CDDP-resistant OVCa, independently of p53 status.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cisplatino/farmacología , Imidazoles/farmacología , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Naftoquinonas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Línea Celular Tumoral , Daño del ADN , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Ováricas/patología , Survivin
3.
Cells ; 12(8)2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37190034

RESUMEN

BACKGROUND: The high recurrence of glioblastoma (GB) that occurs adjacent to the resection cavity within two years of diagnosis urges an improvement of therapies oriented to GB local control. Photodynamic therapy (PDT) has been proposed to cleanse infiltrating tumor cells from parenchyma to ameliorate short long-term progression-free survival. We examined 5-aminolevulinic acid (5-ALA)-mediated PDT effects as therapeutical treatment and determined optimal conditions for PDT efficacy without causing phototoxic injury to the normal brain tissue. METHODS: We used a platform of Glioma Initiation Cells (GICs) infiltrating cerebral organoids with two different glioblastoma cells, GIC7 and PG88. We measured GICs-5-ALA uptake and PDT/5-ALA activity in dose-response curves and the efficacy of the treatment by measuring proliferative activity and apoptosis. RESULTS: 5-ALA (50 and 100 µg/mL) was applied, and the release of protoporphyrin IX (PpIX) fluorescence measures demonstrated that the emission of PpIX increases progressively until its stabilization at 24 h. Moreover, decreased proliferation and increased apoptosis corroborated the effect of 5-ALA/PDT on cancer cells without altering normal cells. CONCLUSIONS: We provide evidence about the effectiveness of PDT to treat high proliferative GB cells in a complex in vitro system, which combines normal and cancer cells and is a useful tool to standardize new strategic therapies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Fotoquimioterapia , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Técnicas de Cocultivo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Glioma/patología , Encéfalo/patología , Organoides
4.
Neurooncol Adv ; 3(1): vdab076, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34377986

RESUMEN

BACKGROUND: The radio- and chemo-resistance of glioblastoma stem-like cells (GSCs), together with their innate tumor-initiating aptitude, make this cell population a crucial target for effective therapies. However, targeting GSCs is hardly difficult and complex, due to the presence of the blood-brain barrier (BBB) and the infiltrative nature of GSCs arousing their dispersion within the brain parenchyma. METHODS: Liposomes (LIPs), surface-decorated with an Apolipoprotein E-modified peptide (mApoE) to enable BBB crossing, were loaded with doxorubicin (DOXO), as paradigm of cytotoxic drug triggering immunogenic cell death (ICD). Patient-derived xenografts (PDXs) obtained by GSC intracranial injection were treated with mApoE-DOXO-LIPs alone or concomitantly with radiation. RESULTS: Our results indicated that mApoE, through the engagement of the low-density lipoprotein receptor (LDLR), promotes mApoE-DOXO-LIPs transcytosis across the BBB and confers target specificity towards GSCs. Irradiation enhanced LDLR expression on both BBB and GSCs, thus further promoting LIP diffusion and specificity. When administered in combination with radiations, mApoE-DOXO-LIPs caused a significant reduction of in vivo tumor growth due to GSC apoptosis. GSC apoptosis prompted microglia/macrophage phagocytic activity, together with the activation of the antigen-presenting machinery crucially required for anti-tumor adaptive immune response. CONCLUSIONS: Our results advocate for radiotherapy and adjuvant administration of drug-loaded, mApoE-targeted nanovectors as an effective strategy to deliver cytotoxic molecules to GSCs at the surgical tumor margins, the forefront of glioblastoma (GBM) recurrence, circumventing BBB hurdles. DOXO encapsulation proved in situ immune response activation within GBM microenvironment.

5.
Cancers (Basel) ; 13(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205341

RESUMEN

Therapeutic resistance after multimodal therapy is the most relevant cause of glioblastoma (GBM) recurrence. Extensive cellular heterogeneity, mainly driven by the presence of GBM stem-like cells (GSCs), strongly correlates with patients' prognosis and limited response to therapies. Defining the mechanisms that drive stemness and control responsiveness to therapy in a GSC-specific manner is therefore essential. Here we investigated the role of integrin a6 (ITGA6) in controlling stemness and resistance to radiotherapy in proneural and mesenchymal GSCs subtypes. Using cell sorting, gene silencing, RNA-Seq, and in vitro assays, we verified that ITGA6 expression seems crucial for proliferation and stemness of proneural GSCs, while it appears not to be relevant in mesenchymal GSCs under basal conditions. However, when challenged with a fractionated protocol of radiation therapy, comparable to that used in the clinical setting, mesenchymal GSCs were dependent on integrin a6 for survival. Specifically, GSCs with reduced levels of ITGA6 displayed a clear reduction of DNA damage response and perturbation of cell cycle pathways. These data indicate that ITGA6 inhibition is able to overcome the radioresistance of mesenchymal GSCs, while it reduces proliferation and stemness in proneural GSCs. Therefore, integrin a6 controls crucial characteristics across GBM subtypes in GBM heterogeneous biology and thus may represent a promising target to improve patient outcomes.

6.
Immunobiology ; 225(1): 151853, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31703822

RESUMEN

Glioma is the most common primary brain cancer, and half of patients present a diagnosis of glioblastoma (GBM), its most aggressive and lethal form. Conventional therapies, including surgery, radiotherapy, and chemotherapy, have not resulted in major ameliorations in GBM survival outcome, which remains extremely poor. Recent immunotherapy improvements for other tumors, coupled with growing knowledge of the complex interactions between malignant glioma cells and the immune system, led to an exponential increase in glioma immunotherapy research. However, immunotherapeutic strategies in GBM have not yet reached their full potential, mainly due to the limited understanding of the strong immunosuppressive microenvironment (TME) characterizing this tumor. Glioma-associated macrophages and microglia (GAMs) are key drivers of the local immunosuppression promoting tumor progression and its resistance to immunomodulating therapeutic strategies. Together with other myeloid cells, such as dendritic cells and neutrophils, GAMs actively shape glioma TME, modulate anti-tumoral immune response and support angiogenesis, tumor cell invasion and proliferation. In this review, we discuss the role of myeloid cells in the complex TME of glioma and the available clinical data on therapeutic strategies focusing on approaches that affect myeloid cells activity in GBM.


Asunto(s)
Neoplasias Encefálicas/inmunología , Glioma/inmunología , Macrófagos/inmunología , Microglía/inmunología , Células Supresoras de Origen Mieloide/fisiología , Animales , Terapia Biológica , Humanos , Terapia de Inmunosupresión , Microambiente Tumoral
7.
Oncotarget ; 8(43): 73640-73653, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-29088733

RESUMEN

Glioblastoma (GBM) still remains an incurable disease being radiotherapy (RT) the mainstay treatment. Glioblastoma intra-tumoral heterogeneity and Glioblastoma-Initiating Cells (GICs) challenge the design of effective therapies. We investigated GICs and non-GICs response to RT in a paired in-vitro model and addressed molecular programs activated in GICs after RT. Established GICs heterogeneously expressed several GICs markers and displayed a mesenchymal signature. Upon fractionated RT, GICs reported higher radioresistance compared to non-GICs and showed lower α- and ß-values, according to the Linear Quadratic Model interpretation of the survival curves. Moreover, a significant correlation was observed between GICs radiosensitivity and patient disease-free survival. Transcriptome analysis of GICs after acquisition of a radioresistant phenotype reported significant activation of Proneural-to-Mesenchymal transition (PMT) and pro-inflammatory pathways, being STAT3 and IL6 the major players. Our findings support a leading role of mesenchymal GICs in defining patient response to RT and provide the grounds for targeted therapies based on the blockade of inflammatory pathways to overcome GBM radioresistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA