Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 84(17): 3192-3208.e11, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173639

RESUMEN

Topoisomerase I (TOP1) is an essential enzyme that relaxes DNA to prevent and dissipate torsional stress during transcription. However, the mechanisms underlying the regulation of TOP1 activity remain elusive. Using enhanced cross-linking and immunoprecipitation (eCLIP) and ultraviolet-cross-linked RNA immunoprecipitation followed by total RNA sequencing (UV-RIP-seq) in human colon cancer cells along with RNA electrophoretic mobility shift assays (EMSAs), biolayer interferometry (BLI), and in vitro RNA-binding assays, we identify TOP1 as an RNA-binding protein (RBP). We show that TOP1 directly binds RNA in vitro and in cells and that most RNAs bound by TOP1 are mRNAs. Using a TOP1 RNA-binding mutant and topoisomerase cleavage complex sequencing (TOP1cc-seq) to map TOP1 catalytic activity, we reveal that RNA opposes TOP1 activity as RNA polymerase II (RNAPII) commences transcription of active genes. We further demonstrate the inhibitory role of RNA in regulating TOP1 activity by employing DNA supercoiling assays and magnetic tweezers. These findings provide insight into the coordinated actions of RNA and TOP1 in regulating DNA topological stress intrinsic to RNAPII-dependent transcription.


Asunto(s)
ADN-Topoisomerasas de Tipo I , ARN Polimerasa II , Proteínas de Unión al ARN , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo I/genética , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Unión Proteica , ADN/metabolismo , ADN/genética , Transcripción Genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN/metabolismo , ARN/genética , Línea Celular Tumoral , ADN Superhelicoidal/metabolismo , ADN Superhelicoidal/genética , Células HCT116 , Conformación de Ácido Nucleico
2.
Nat Cell Biol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169219

RESUMEN

Post-transcriptional mechanisms are fundamental safeguards of progenitor cell identity and are often dysregulated in cancer. Here, we identified regulators of P-bodies as crucial vulnerabilities in acute myeloid leukaemia (AML) through genome-wide CRISPR screens in normal and malignant haematopoietic progenitors. We found that leukaemia cells harbour aberrantly elevated numbers of P-bodies and show that P-body assembly is crucial for initiation and maintenance of AML. Notably, P-body loss had little effect upon homoeostatic haematopoiesis but impacted regenerative haematopoiesis. Molecular characterization of P-bodies purified from human AML cells unveiled their critical role in sequestering messenger RNAs encoding potent tumour suppressors from the translational machinery. P-body dissolution promoted translation of these mRNAs, which in turn rewired gene expression and chromatin architecture in leukaemia cells. Collectively, our findings highlight the contrasting and unique roles of RNA sequestration in P-bodies during tissue homoeostasis and oncogenesis. These insights open potential avenues for understanding myeloid leukaemia and future therapeutic interventions.

3.
Cell Genom ; 3(5): 100303, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37228754

RESUMEN

Although the role of RNA binding proteins (RBPs) in extracellular RNA (exRNA) biology is well established, their exRNA cargo and distribution across biofluids are largely unknown. To address this gap, we extend the exRNA Atlas resource by mapping exRNAs carried by extracellular RBPs (exRBPs). This map was developed through an integrative analysis of ENCODE enhanced crosslinking and immunoprecipitation (eCLIP) data (150 RBPs) and human exRNA profiles (6,930 samples). Computational analysis and experimental validation identified exRBPs in plasma, serum, saliva, urine, cerebrospinal fluid, and cell-culture-conditioned medium. exRBPs carry exRNA transcripts from small non-coding RNA biotypes, including microRNA (miRNA), piRNA, tRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Y RNA, and lncRNA, as well as protein-coding mRNA fragments. Computational deconvolution of exRBP RNA cargo reveals associations of exRBPs with extracellular vesicles, lipoproteins, and ribonucleoproteins across human biofluids. Overall, we mapped the distribution of exRBPs across human biofluids, presenting a resource for the community.

4.
Nat Protoc ; 17(5): 1223-1265, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35322209

RESUMEN

Discovery of interaction sites between RNA-binding proteins (RBPs) and their RNA targets plays a critical role in enabling our understanding of how these RBPs control RNA processing and regulation. Cross-linking and immunoprecipitation (CLIP) provides a generalizable, transcriptome-wide method by which RBP/RNA complexes are purified and sequenced to identify sites of intermolecular contact. By simplifying technical challenges in prior CLIP methods and incorporating the generation of and quantitative comparison against size-matched input controls, the single-end enhanced CLIP (seCLIP) protocol allows for the profiling of these interactions with high resolution, efficiency and scalability. Here, we present a step-by-step guide to the seCLIP method, detailing critical steps and offering insights regarding troubleshooting and expected results while carrying out the ~4-d protocol. Furthermore, we describe a comprehensive bioinformatics pipeline that offers users the tools necessary to process two replicate datasets and identify reproducible and significant peaks for an RBP of interest in ~2 d.


Asunto(s)
ARN , Transcriptoma , Sitios de Unión , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inmunoprecipitación , Unión Proteica , ARN/genética , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA