Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Stem Cells ; 33(6): 2077-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25694335

RESUMEN

Trisomy 21 (T21), Down Syndrome (DS) is the most common genetic cause of dementia and intellectual disability. Modeling DS is beginning to yield pharmaceutical therapeutic interventions for amelioration of intellectual disability, which are currently being tested in clinical trials. DS is also a unique genetic system for investigation of pathological and protective mechanisms for accelerated ageing, neurodegeneration, dementia, cancer, and other important common diseases. New drugs could be identified and disease mechanisms better understood by establishment of well-controlled cell model systems. We have developed a first nonintegration-reprogrammed isogenic human induced pluripotent stem cell (iPSC) model of DS by reprogramming the skin fibroblasts from an adult individual with constitutional mosaicism for DS and separately cloning multiple isogenic T21 and euploid (D21) iPSC lines. Our model shows a very low number of reprogramming rearrangements as assessed by a high-resolution whole genome CGH-array hybridization, and it reproduces several cellular pathologies seen in primary human DS cells, as assessed by automated high-content microscopic analysis. Early differentiation shows an imbalance of the lineage-specific stem/progenitor cell compartments: T21 causes slower proliferation of neural and faster expansion of hematopoietic lineage. T21 iPSC-derived neurons show increased production of amyloid peptide-containing material, a decrease in mitochondrial membrane potential, and an increased number and abnormal appearance of mitochondria. Finally, T21-derived neurons show significantly higher number of DNA double-strand breaks than isogenic D21 controls. Our fully isogenic system therefore opens possibilities for modeling mechanisms of developmental, accelerated ageing, and neurodegenerative pathologies caused by T21.


Asunto(s)
Envejecimiento/fisiología , Diferenciación Celular/fisiología , Síndrome de Down/genética , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Animales , Células Cultivadas , Fibroblastos/citología , Humanos , Mitocondrias/genética
2.
Hum Mutat ; 35(10): 1203-10, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044680

RESUMEN

Rare, atypical, and undiagnosed autosomal-recessive disorders frequently occur in the offspring of consanguineous couples. Current routine diagnostic genetic tests fail to establish a diagnosis in many cases. We employed exome sequencing to identify the underlying molecular defects in patients with unresolved but putatively autosomal-recessive disorders in consanguineous families and postulated that the pathogenic variants would reside within homozygous regions. Fifty consanguineous families participated in the study, with a wide spectrum of clinical phenotypes suggestive of autosomal-recessive inheritance, but with no definitive molecular diagnosis. DNA samples from the patient(s), unaffected sibling(s), and the parents were genotyped with a 720K SNP array. Exome sequencing and array CGH (comparative genomic hybridization) were then performed on one affected individual per family. High-confidence pathogenic variants were found in homozygosity in known disease-causing genes in 18 families (36%) (one by array CGH and 17 by exome sequencing), accounting for the clinical phenotype in whole or in part. In the remainder of the families, no causative variant in a known pathogenic gene was identified. Our study shows that exome sequencing, in addition to being a powerful diagnostic tool, promises to rapidly expand our knowledge of rare genetic Mendelian disorders and can be used to establish more detailed causative links between mutant genotypes and clinical phenotypes.


Asunto(s)
Consanguinidad , Exoma , Genes Recesivos/genética , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Adolescente , Adulto , Árabes , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Linaje , Análisis de Secuencia de ADN , Adulto Joven
3.
Genome Res ; 21(10): 1592-600, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21862626

RESUMEN

X-chromosome inactivation (XCI) is a dosage compensation mechanism that silences the majority of genes on one X chromosome in each female cell. To characterize epigenetic changes that accompany this process, we measured DNA methylation levels in 45,X patients carrying a single active X chromosome (X(a)), and in normal females, who carry one X(a) and one inactive X (X(i)). Methylated DNA was immunoprecipitated and hybridized to high-density oligonucleotide arrays covering the X chromosome, generating epigenetic profiles of active and inactive X chromosomes. We observed that XCI is accompanied by changes in DNA methylation specifically at CpG islands (CGIs). While the majority of CGIs show increased methylation levels on the X(i), XCI actually results in significant reductions in methylation at 7% of CGIs. Both intra- and inter-genic CGIs undergo epigenetic modification, with the biggest increase in methylation occurring at the promoters of genes silenced by XCI. In contrast, genes escaping XCI generally have low levels of promoter methylation, while genes that show inter-individual variation in silencing show intermediate increases in methylation. Thus, promoter methylation and susceptibility to XCI are correlated. We also observed a global correlation between CGI methylation and the evolutionary age of X-chromosome strata, and that genes escaping XCI show increased methylation within gene bodies. We used our epigenetic map to predict 26 novel genes escaping XCI, and searched for parent-of-origin-specific methylation differences, but found no evidence to support imprinting on the human X chromosome. Our study provides a detailed analysis of the epigenetic profile of active and inactive X chromosomes.


Asunto(s)
Cromosomas Humanos X/genética , Metilación de ADN , Inactivación del Cromosoma X , Mapeo Cromosómico , Islas de CpG , Femenino , Genes Ligados a X , Impresión Genómica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Síndrome de Turner/genética
4.
Am J Med Genet A ; 164A(3): 801-5, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24591035

RESUMEN

Whole genome profiling such as array comparative genomic hybridization has identified novel genomic imbalances. Copy number studies led to an explosion of the discoveries of new segmental duplication-mediated deletions and duplications. These rearrangements are mostly the result of non-allelic homologous recombination (NAHR) between low-copy repeats or segmental duplications. We have identified an individual with a small, rare deletion on chromosome 2q21.1 with psychomotor delay, hyperactivity, and aggressive behavior. The rearranged region is flanked by large complex low-copy repeats and includes only five genes: GPR148, FAM123C (AMER3), ARHGEF4, FAM168B, and PLEKHB2. The comparison between our patient and the cases previously reported in the literature contributes to a better definition of genotype-phenotype correlation of 2q21.1 microdeletions.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 2 , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/genética , Adulto , Preescolar , Hibridación Genómica Comparativa , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Facies , Humanos , Hibridación Fluorescente in Situ , Masculino , Fenotipo
5.
Genome Res ; 20(9): 1271-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20631049

RESUMEN

The maternal and paternal genomes possess distinct epigenetic marks that distinguish them at imprinted loci. In order to identify imprinted loci, we used a novel method, taking advantage of the fact that uniparental disomy (UPD) provides a system that allows the two parental chromosomes to be studied independently. We profiled the paternal and maternal methylation on chromosome 15 using immunoprecipitation of methylated DNA and hybridization to tiling oligonucleotide arrays. Comparison of six individuals with maternal versus paternal UPD15 revealed 12 differentially methylated regions (DMRs). Putative DMRs were validated by bisulfite sequencing, confirming the presence of parent-of-origin-specific methylation marks. We detected DMRs associated with known imprinted genes within the Prader-Willi/Angelman syndrome region, such as SNRPN and MAGEL2, validating this as a method of detecting imprinted loci. Of the 12 DMRs identified, eight were novel, some of which are associated with genes not previously thought to be imprinted. These include a site within intron 2 of IGF1R at 15q26.3, a gene that plays a fundamental role in growth, and an intergenic site upstream of GABRG3 that lies within a previously defined candidate region conferring an increased maternal risk of psychosis. These data provide a map of parent-of-origin-specific epigenetic modifications on chromosome 15, identifying DNA elements that may play a functional role in the imprinting process. Application of this methodology to other chromosomes for which UPD has been reported will allow the systematic identification of imprinted sites throughout the genome.


Asunto(s)
Cromosomas Humanos Par 15/genética , Metilación de ADN , Disomía Uniparental/genética , Síndrome de Angelman/genética , ADN/metabolismo , Perfilación de la Expresión Génica , Humanos , Síndrome de Prader-Willi/genética , Proteínas/genética , Proteínas Nucleares snRNP/genética
6.
Redox Biol ; 13: 82-93, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28575744

RESUMEN

There is emerging evidence for the involvement of reactive oxygen species (ROS) in the regulation of stem cells and cellular differentiation. Absence of the ROS-generating NADPH oxidase NOX2 in chronic granulomatous disease (CGD) patients, predominantly manifests as immune deficiency, but has also been associated with decreased cognition. Here, we investigate the role of NOX enzymes in neuronal homeostasis in adult mouse brain and in neural cells derived from human induced pluripotent stem cells (iPSC). High levels of NOX2 were found in mouse adult neurogenic regions. In NOX2-deficient mice, neurogenic regions showed diminished redox modifications, as well as decrease in neuroprecursor numbers and in expression of genes involved in neural differentiation including NES, BDNF and OTX2. iPSC from healthy subjects and patients with CGD were used to study the role of NOX2 in human in vitro neuronal development. Expression of NOX2 was low in undifferentiated iPSC, upregulated upon neural induction, and disappeared during neuronal differentiation. In human neurospheres, NOX2 protein and ROS generation were polarized within the inner cell layer of rosette structures. NOX2 deficiency in CGD-iPSCs resulted in an abnormal neural induction in vitro, as revealed by a reduced expression of neuroprogenitor markers (NES, BDNF, OTX2, NRSF/REST), and a decreased generation of mature neurons. Vector-mediated NOX2 expression in NOX2-deficient iPSCs rescued neurogenesis. Taken together, our study provides novel evidence for a regulatory role of NOX2 during early stages of neurogenesis in mouse and human.


Asunto(s)
Encéfalo/citología , Enfermedad Granulomatosa Crónica/metabolismo , Células Madre Pluripotentes Inducidas/citología , NADPH Oxidasa 2/genética , Células-Madre Neurales/citología , Neurogénesis , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Enfermedad Granulomatosa Crónica/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , NADPH Oxidasa 2/metabolismo , Nestina/genética , Nestina/metabolismo , Células-Madre Neurales/metabolismo , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA