Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Infect Immun ; 90(1): e0056021, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34748369

RESUMEN

Bacillus anthracis is the causative agent of anthrax. This Gram-positive bacterium poses a substantial risk to human health due to high mortality rates and the potential for malicious use as a bioterror weapon. To survive within the vertebrate host, B. anthracis relies on two-component system (TCS) signaling to sense host-induced stresses and respond to alterations in the environment through changes in target gene expression. HitRS and HssRS are cross-regulating TCSs in B. anthracis that respond to cell envelope disruptions and high heme levels, respectively. In this study, an unbiased and targeted genetic selection was designed to identify gene products that are involved in HitRS and HssRS signaling. This selection led to the identification of inactivating mutations within dnaJ and clpX that disrupt HitRS- and HssRS-dependent gene expression. DnaJ and ClpX are the substrate-binding subunits of the DnaJK protein chaperone and ClpXP protease, respectively. DnaJ regulates the levels of HitR and HitS to facilitate signal transduction, while ClpX specifically regulates HitS levels. Together, these results reveal that the protein homeostasis regulators, DnaJ and ClpX, function to maintain B. anthracis signal transduction activities through TCS regulation.


Asunto(s)
Carbunco/microbiología , Bacillus anthracis/fisiología , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Transducción de Señal , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Transporte de Proteínas , Selección Genética
2.
PLoS Pathog ; 16(12): e1009148, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33362282

RESUMEN

Two component systems (TCSs) are a primary mechanism of signal sensing and response in bacteria. Systematic characterization of an entire TCS could provide a mechanistic understanding of these important signal transduction systems. Here, genetic selections were employed to dissect the molecular basis of signal transduction by the HitRS system that detects cell envelope stress in the pathogen Bacillus anthracis. Numerous point mutations were isolated within HitRS, 17 of which were in a 50-residue HAMP domain. Mutational analysis revealed the importance of hydrophobic interactions within the HAMP domain and highlighted its essentiality in TCS signaling. In addition, these data defined residues critical for activities intrinsic to HitRS, uncovered specific interactions among individual domains and between the two signaling proteins, and revealed that phosphotransfer is the rate-limiting step for signal transduction. Furthermore, this study establishes the use of unbiased genetic selections to study TCS signaling and provides a comprehensive mechanistic understanding of an entire TCS.


Asunto(s)
Bacillus anthracis/fisiología , Proteínas Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Selección Genética/fisiología , Estrés Fisiológico/fisiología
3.
Mol Cell ; 42(2): 199-209, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21504831

RESUMEN

Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by ∼60 Å, twice the ∼30 Å separation required for operator binding. This approach may represent a general strategy for the inhibition of multidomain proteins.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Chromobacterium/efectos de los fármacos , Lactonas/farmacología , Percepción de Quorum/efectos de los fármacos , Proteínas Represoras/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidores , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Antibacterianos/química , Sitios de Unión , Chromobacterium/genética , Chromobacterium/crecimiento & desarrollo , Chromobacterium/metabolismo , Chromobacterium/patogenicidad , Cristalografía por Rayos X , ADN/metabolismo , Relación Dosis-Respuesta a Droga , Lactonas/química , Lactonas/metabolismo , Ligandos , Modelos Moleculares , Estructura Molecular , Mutación , Conformación Proteica , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Relación Estructura-Actividad , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo , Virulencia
4.
PLoS Pathog ; 10(3): e1004044, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24675902

RESUMEN

Two-component signaling systems (TCSs) are one of the mechanisms that bacteria employ to sense and adapt to changes in the environment. A prototypical TCS functions as a phosphorelay from a membrane-bound sensor histidine kinase (HK) to a cytoplasmic response regulator (RR) that controls target gene expression. Despite significant homology in the signaling domains of HKs and RRs, TCSs are thought to typically function as linear systems with little to no cross-talk between non-cognate HK-RR pairs. Here we have identified several cell envelope acting compounds that stimulate a previously uncharacterized Bacillus anthracis TCS. Furthermore, this TCS cross-signals with the heme sensing TCS HssRS; therefore, we have named it HssRS interfacing TCS (HitRS). HssRS reciprocates cross-talk to HitRS, suggesting a link between heme toxicity and cell envelope stress. The signaling between HssRS and HitRS occurs in the parental B. anthracis strain; therefore, we classify HssRS-HitRS interactions as cross-regulation. Cross-talk between HssRS and HitRS occurs at both HK-RR and post-RR signaling junctions. Finally, HitRS also regulates a previously unstudied ABC transporter implicating this transporter in the response to cell envelope stress. This chemical biology approach to probing TCS signaling provides a new model for understanding how bacterial signaling networks are integrated to enable adaptation to complex environments such as those encountered during colonization of the vertebrate host.


Asunto(s)
Bacillus anthracis/fisiología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Hemo/metabolismo , Transducción de Señal/fisiología , Pared Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Estrés Fisiológico
5.
Proc Natl Acad Sci U S A ; 110(20): 8206-11, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23630262

RESUMEN

Staphylococcus aureus is a significant infectious threat to global public health. Acquisition or synthesis of heme is required for S. aureus to capture energy through respiration, but an excess of this critical cofactor is toxic to bacteria. S. aureus employs the heme sensor system (HssRS) to overcome heme toxicity; however, the mechanism of heme sensing is not defined. Here, we describe the identification of a small molecule activator of HssRS that induces endogenous heme biosynthesis by perturbing central metabolism. This molecule is toxic to fermenting S. aureus, including clinically relevant small colony variants. The utility of targeting fermenting bacteria is exemplified by the fact that this compound prevents the emergence of antibiotic resistance, enhances phagocyte killing, and reduces S. aureus pathogenesis. Not only is this small molecule a powerful tool for studying bacterial heme biosynthesis and central metabolism; it also establishes targeting of fermentation as a viable antibacterial strategy.


Asunto(s)
Fermentación , Regulación Bacteriana de la Expresión Génica , Hemo/biosíntesis , Naftoles/farmacología , Pirazoles/farmacología , Staphylococcus aureus/metabolismo , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Cromatografía Líquida de Alta Presión , Técnicas Químicas Combinatorias , Diseño de Fármacos , Glucólisis , Hemo Oxigenasa (Desciclizante)/metabolismo , Concentración 50 Inhibidora , Leucocitos/citología , Espectrometría de Masas , Ratones , Microscopía Electrónica de Rastreo , Fagocitos/metabolismo , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos
6.
J Bacteriol ; 196(7): 1335-42, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24443529

RESUMEN

The reactive nature of heme enables its use as an enzymatic cofactor while rendering excess heme toxic. The importance of heme detoxification machinery is highlighted by the presence of various types of these homeostatic systems in Gram-positive and Gram-negative microorganisms. A number of pathogens possess orthologs of the HssRS/HrtAB heme detoxification system, underscoring a potential role this system plays in the survival of bacteria in heme-rich environments such as the vertebrate host. In this work, we sought to determine the role of this system in protection against metalloporphyrin heme analogues identified by previous studies as antimicrobial agents. Our findings demonstrate that only toxic metalloporphyrins maximally activate expression of the Staphylococcus aureus heme detoxification system, suggesting that the sensing mechanism of HssRS might require a component of the associated toxicity rather than or in addition to the metalloporphyrin itself. We further establish that only a subset of toxic metalloporphyrins elicit the oxidative damage previously shown to be a significant component of heme toxicity whereas all toxic noniron metalloporphyrins inhibit bacterial respiration. Finally, we demonstrate that, despite the fact that toxic metalloporphyrin treatment induces expression of S. aureus heme detoxification machinery, the HrtAB heme export pump is unable to detoxify most of these molecules. The ineffectiveness of HrtAB against toxic heme analogues provides an explanation for their increased antimicrobial activity relative to heme. Additionally, these studies define the specificity of HssRS/HrtAB, which may provide future insight into the biochemical mechanisms of these systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hemo/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico , Hemo/análogos & derivados , Hemo/toxicidad , Humanos , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/genética
7.
bioRxiv ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39026866

RESUMEN

Bacillus anthracis, a Gram-positive facultative anaerobe and the causative agent of anthrax, multiplies to extraordinarily high numbers in vertebrate blood, resulting in considerable heme exposure. Heme is an essential nutrient and the preferred iron source for bacteria during vertebrate colonization, but its high redox potential makes it toxic in excess. To regulate heme homeostasis, many Gram-positive bacteria, including B. anthracis, rely on the two-component signaling system HssRS. HssRS comprises the heme sensing histidine kinase HssS, which modulates the activity of the HssR transcription factor to enable bacteria to circumvent heme toxicity. However, the regulation of the HssRS system remains unclear. Here we identify FapR, the transcriptional regulator of fatty acid biosynthesis, as a key factor in HssRS function. FapR plays an important role in maintaining membrane integrity and the localization of the histidine kinase HssS. Specifically, disruption of fapR leads to increased membrane rigidity, which hinders the penetration of HssRS inducers, resulting in the inactivation of HssRS. Furthermore, deletion of fapR affects the loading of HssS onto the cell membrane, compromising its heme sensing function and subsequently reducing endogenous heme biosynthesis. These findings shed light on the molecular mechanisms governing bacterial adaptation to heme stress and provide potential targets for antimicrobial intervention strategies.

8.
Mol Microbiol ; 86(6): 1376-92, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23043465

RESUMEN

Staphylococcus aureus is a pathogen that infects multiple anatomical sites leading to a diverse array of diseases. Although vertebrates can restrict the growth of invading pathogens by sequestering iron within haem, S. aureus surmounts this challenge by employing high-affinity haem uptake systems. However, the presence of excess haem is highly toxic, necessitating tight regulation of haem levels. To overcome haem stress, S. aureus expresses the detoxification system HrtAB. In this work, a transposon screen was performed in the background of a haem-susceptible, HrtAB-deficient S. aureus strain to identify the substrate transported by this putative pump and the source of haem toxicity. While a recent report indicates that HrtAB exports haem itself, the haem-resistant mutants uncovered by the transposon selection enabled us to elucidate the cellular factors contributing to haem toxicity. All mutants identified in this screen inactivated the menaquinone (MK) biosynthesis pathway. Deletion of the final steps of this pathway revealed that quinone molecules localizing to the cell membrane potentiate haem-associated superoxide production and subsequent oxidative damage. These data suggest a model in which membrane-associated haem and quinone molecules form a redox cycle that continuously generates semiquinones and reduced haem, both of which react with atmospheric oxygen to produce superoxide.


Asunto(s)
Hemo/toxicidad , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Vitamina K 2/metabolismo , Adenosina Trifosfatasas/deficiencia , Vías Biosintéticas/genética , Elementos Transponibles de ADN , Eliminación de Gen , Mutagénesis Insercional , Estrés Oxidativo , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Superóxidos/metabolismo
9.
PLoS Pathog ; 6(3): e1000802, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20300601

RESUMEN

The Staphylococcus aureus HrtAB system is a hemin-regulated ABC transporter composed of an ATPase (HrtA) and a permease (HrtB) that protect S. aureus against hemin toxicity. S. aureus strains lacking hrtA exhibit liver-specific hyper-virulence and upon hemin exposure over-express and secrete immunomodulatory factors that interfere with neutrophil recruitment to the site of infection. It has been proposed that heme accumulation in strains lacking hrtAB is the signal which triggers S. aureus to elaborate this anti-neutrophil response. However, we report here that S. aureus strains expressing catalytically inactive HrtA do not elaborate the same secreted protein profile. This result indicates that the physical absence of HrtA is responsible for the increased expression of immunomodulatory factors, whereas deficiencies in the ATPase activity of HrtA do not contribute to this process. Furthermore, HrtB expression in strains lacking hrtA decreases membrane integrity consistent with dysregulated permease function. Based on these findings, we propose a model whereby hemin-mediated over-expression of HrtB in the absence of HrtA damages the staphylococcal membrane through pore formation. In turn, S. aureus senses this membrane damage, triggering the increased expression of immunomodulatory factors. In support of this model, wildtype S. aureus treated with anti-staphylococcal channel-forming peptides produce a secreted protein profile that mimics the effect of treating DeltahrtA with hemin. These results suggest that S. aureus senses membrane damage and elaborates a gene expression program that protects the organism from the innate immune response of the host.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Infecciones Cutáneas Estafilocócicas/inmunología , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/genética , Animales , Antibacterianos/farmacología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/inmunología , Exotoxinas/genética , Exotoxinas/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Gramicidina/farmacología , Hemina/metabolismo , Hemina/farmacología , Factores Inmunológicos/genética , Factores Inmunológicos/metabolismo , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Neutrófilos/inmunología , Neutrófilos/microbiología , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/patogenicidad , Transcripción Genética/fisiología , Regulación hacia Arriba/inmunología , Virulencia
10.
Nat Commun ; 13(1): 1491, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314695

RESUMEN

HitRS is a two-component system that responds to cell envelope damage in the human pathogen Bacillus anthracis. Here we identify an RNA-binding protein, KrrA, that regulates HitRS function by modulating the stability of the hitRS mRNA. In addition to hitRS, KrrA binds to over 70 RNAs and, directly or indirectly, affects the expression of over 150 genes involved in multiple processes, including genetic competence, sporulation, RNA turnover, DNA repair, transport, and cellular metabolism. KrrA does not exhibit detectable nuclease activity in vitro, and thus the mechanism by which it modulates mRNA stability remains unclear.


Asunto(s)
Bacillus anthracis , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
11.
J Bacteriol ; 193(15): 3871-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21622734

RESUMEN

The bacterial pathogen Chromobacterium violaceum uses a LuxIR-type quorum-sensing system to detect and respond to changes in cell population density. CviI synthesizes the autoinducer C(10)-homoserine lactone (C(10)-HSL), and CviR is a cytoplasmic DNA binding transcription factor that activates gene expression following binding to C(10)-HSL. A number of behaviors are controlled by quorum sensing in C. violaceum. However, few genes have been shown to be directly controlled by CviR, in part because the DNA motif bound by CviR is not well characterized. Here, we define the DNA sequence required for promoter recognition by CviR. Using in vivo data generated from a library of point mutations in a CviR-regulated promoter, we find that CviR binds to a palindrome with the ideal sequence CTGNCCNNNNGGNCAG. We constructed a position weight matrix using these in vivo data and scanned the C. violaceum genome to predict CviR binding sites. We measured direct activation of the identified promoters by CviR and found that CviR controls the expression of the promoter for a chitinase, a type VI secretion-related gene, a transcriptional regulator gene, a guanine deaminase gene, and cviI. Indeed, regulation of cviI expression by CviR generates a canonical quorum-sensing positive-feedback loop.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chromobacterium/fisiología , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum , Proteínas Represoras/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión , Chromobacterium/genética , ADN Bacteriano/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/química , Proteínas Represoras/genética
12.
Infect Immun ; 78(4): 1618-28, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20100857

RESUMEN

The tremendous success of Staphylococcus aureus as a pathogen is due to the controlled expression of a diverse array of virulence factors. The effects of host environments on the expression of virulence factors and the mechanisms by which S. aureus adapts to colonize distinct host tissues are largely unknown. Vertebrates have evolved to sequester nutrient iron from invading bacteria, and iron availability is a signal that alerts pathogenic microorganisms when they enter the hostile host environment. Consistent with this, we report here that S. aureus senses alterations in the iron status via the ferric uptake regulator (Fur) and alters the abundance of a large number of virulence factors. These Fur-mediated changes protect S. aureus against killing by neutrophils, and Fur is required for full staphylococcal virulence in a murine model of infection. A potential mechanistic explanation for the impact of Fur on virulence is provided by the observation that Fur coordinates the reciprocal expression of cytolysins and a subset of immunomodulatory proteins. More specifically, S. aureus lacking fur exhibits decreased expression of immunomodulatory proteins and increased expression of cytolysins. These findings reveal that Fur is involved in initiating a regulatory program that organizes the expression of virulence factors during the pathogenesis of S. aureus pneumonia.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Regulación Bacteriana de la Expresión Génica , Neumonía Estafilocócica/microbiología , Proteínas Represoras/fisiología , Staphylococcus aureus/patogenicidad , Factores de Virulencia/biosíntesis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Cromatografía Liquida , Modelos Animales de Enfermedad , Electroforesis en Gel Bidimensional , Femenino , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Proteoma/análisis , Proteínas Represoras/genética , Staphylococcus aureus/fisiología
13.
Mol Microbiol ; 72(3): 763-78, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19400785

RESUMEN

Bacillus anthracis proliferates to high levels within vertebrate tissues during the pathogenesis of anthrax. This growth is facilitated by the acquisition of nutrient iron from host haem. However, haem acquisition can lead to the accumulation of toxic amounts of haem within B. anthracis. Here, we show that B. anthracis resists haem toxicity by sensing haem through the HssRS two-component system, which regulates expression of the haem-detoxifying transporter HrtAB. In addition, we demonstrate that B. anthracis exhibits elevated HssRS function compared with its evolutionary relative Staphylococcus aureus. Elevated haem sensing is likely required by B. anthracis due to the significant haem sensitivity exhibited by members of the genus Bacilli. We also demonstrate that B. anthracis depends on conserved residues within the previously uncharacterized sensing domain of the histidine kinase HssS for HssS function. Finally, we show that the haem- and HssRS-regulated hrtAB promoter is activated in a murine model of anthrax. These results demonstrate the evolutionary conservation of haem sensing among multiple Gram-positive bacteria and begin to provide a mechanistic explanation for the haem resistance of B. anthracis. Further, these data suggest that haem stress is experienced by bacterial pathogens during infection.


Asunto(s)
Bacillus anthracis/enzimología , Proteínas Bacterianas/metabolismo , Hemina/metabolismo , Proteínas Quinasas/metabolismo , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Animales , Bacillus anthracis/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Histidina Quinasa , Ratones , Ratones Endogámicos A , Datos de Secuencia Molecular , Mutagénesis Insercional , Fosforilación , Regiones Promotoras Genéticas , Proteínas Quinasas/genética , Serina Endopeptidasas/genética , Transducción de Señal , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética
14.
mBio ; 11(2)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32234818

RESUMEN

Bacillus anthracis is a spore-forming bacterium that causes devastating infections and has been used as a bioterror agent. This pathogen can survive hostile environments through the signaling activity of two-component systems, which couple environmental sensing with transcriptional activation to initiate a coordinated response to stress. In this work, we describe the identification of a two-component system, EdsRS, which mediates the B. anthracis response to the antimicrobial compound targocil. Targocil is a cell envelope-targeting compound that is toxic to B. anthracis at high concentrations. Exposure to targocil causes damage to the cellular barrier and activates EdsRS to induce expression of a previously uncharacterized cardiolipin synthase, which we have named ClsT. Both EdsRS and ClsT are required for protection against targocil-dependent damage. Induction of clsT by EdsRS during targocil treatment results in an increase in cardiolipin levels, which protects B. anthracis from envelope damage. Together, these results reveal that a two-component system signaling response to an envelope-targeting antimicrobial induces production of a phospholipid associated with stabilization of the membrane. Cardiolipin is then used to repair envelope damage and promote B. anthracis viability.IMPORTANCE Compromising the integrity of the bacterial cell barrier is a common action of antimicrobials. Targocil is an antimicrobial that is active against the bacterial envelope. We hypothesized that Bacillus anthracis, a potential weapon of bioterror, senses and responds to targocil to alleviate targocil-dependent cell damage. Here, we show that targocil treatment increases the permeability of the cellular envelope and is particularly toxic to B. anthracis spores during outgrowth. In vegetative cells, two-component system signaling through EdsRS is activated by targocil. This results in an increase in the production of cardiolipin via a cardiolipin synthase, ClsT, which restores the loss of barrier function, thereby reducing the effectiveness of targocil. By elucidating the B. anthracis response to targocil, we have uncovered an intrinsic mechanism that this pathogen employs to resist toxicity and have revealed therapeutic targets that are important for bacterial defense against structural damage.


Asunto(s)
Antibacterianos/farmacología , Bacillus anthracis/efectos de los fármacos , Bacillus anthracis/fisiología , Proteínas Bacterianas/metabolismo , Cardiolipinas/biosíntesis , Quinazolinas/farmacología , Triazoles/farmacología , Proteínas Bacterianas/genética , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Orden Génico , Permeabilidad/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Esporas Bacterianas/efectos de los fármacos , Esporas Bacterianas/crecimiento & desarrollo , Transcripción Genética
15.
Contrib Microbiol ; 16: 120-135, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19494582

RESUMEN

The important human pathogen Staphylococcus aureus is able to satisfy its nutrient iron requirement by acquiring heme from host hemoglobin in the context of infection. However, heme acquisition exposes S. aureus to heme toxicity. In order to detect the presence of toxic levels of exogenous heme, S. aureus is able to sense heme through the heme sensing system (HssRS) two-component system. Upon sensing heme, HssRS directly regulates the expression of the heme-regulated ABC transporter HrtAB, which alleviates heme toxicity. Importantly, the inability to sense or respond to heme alters the virulence of S. aureus, highlighting the importance of heme sensing and detoxification to staphylococcal pathogenesis. Furthermore, potential orthologues of the Hss and Hrt systems are found in many species of Gram-positive bacteria, a possible indication that heme stress is a challenge faced by bacteria whose habitats include host tissues rich in heme.


Asunto(s)
Hemo/metabolismo , Percepción de Quorum/fisiología , Transducción de Señal/fisiología , Staphylococcus aureus/fisiología , Adaptación Fisiológica , Adenosina Trifosfatasas/fisiología , Evolución Biológica , Hemo/toxicidad , Regiones Promotoras Genéticas , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
16.
J Bacteriol ; 190(10): 3588-96, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18326576

RESUMEN

During systemic infection, Staphylococcus aureus acquires nutrient iron from heme, the cofactor of vertebrate myoglobin and hemoglobin. Upon exposure to heme, S. aureus up-regulates the expression of the heme-regulated transporter, HrtAB. Strains lacking hrtAB exhibit increased sensitivity to heme toxicity, and upon heme exposure they elaborate a secreted protein response that interferes with the recruitment of neutrophils to the site of infection. Taken together, these results have led to the suggestion that hrtAB encodes an efflux system responsible for relieving the toxic effects of accumulated heme. Here we extend these observations by demonstrating that HrtA is the ATPase component of the HrtAB transport system. We show that HrtA is an Mn(2+)/Mg(2+)-dependent ATPase that functions at an optimal pH of 7.5 and exhibits in vitro temperature dependence uncommon to ABC transporter ATPases. Furthermore, we identify conserved residues within HrtA that are required for in vitro ATPase activity and are essential for the functionality of HrtA in vivo. Finally, we show that heme induces an alteration in the gene expression pattern of S. aureus Delta hrtA, implying the presence of a novel transcriptional regulatory mechanism responsible for the previously described immunomodulatory characteristics of hrtA mutants exposed to heme.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Hemo/toxicidad , Staphylococcus aureus/patogenicidad , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/fisiología , Transporte Biológico/genética , Transporte Biológico/fisiología , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Hemo/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Transcripción Genética/fisiología
17.
PLoS Pathog ; 2(8): e87, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16933993

RESUMEN

Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment) or genetic (Deltafur) alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB), a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Proteínas Represoras/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Disponibilidad Biológica , Electroforesis en Gel Bidimensional , Hemo/metabolismo , Concentración de Iones de Hidrógeno , Deficiencias de Hierro , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Espectrometría de Masas , Proteómica , Proteínas Represoras/genética , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Transferrina/metabolismo
18.
FEMS Microbiol Lett ; 363(9)2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27030728

RESUMEN

Several Gram-positive pathogens scavenge host-derived heme to satisfy their nutritional iron requirement. However, heme is a toxic molecule capable of damaging the bacterial cell. Gram-positive pathogens within the phylum Firmicutes overcome heme toxicity by sensing heme through HssRS, a two-component system that regulates the heme detoxification transporter HrtAB. Here we show that heme sensing by HssRS and heme detoxification by HrtAB occur in the insect pathogen Bacillus thuringiensis We find that in B. thuringiensis, HssRS directly regulates an operon, hrmXY, encoding hypothetical membrane proteins that are not found in other Firmicutes with characterized HssRS and HrtAB systems. This novel HssRS-regulated operon or its orthologs BMB171_c3178 and BMB171_c3330 are required for maximal heme resistance. Furthermore, the activity of HrmXY is not dependent on expression of HrtAB. These results suggest that B. thuringiensis senses heme through HssRS and induces expression of separate membrane-localized systems capable of overcoming different aspects of heme toxicity.


Asunto(s)
Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Regulación Bacteriana de la Expresión Génica , Hemo/metabolismo , Bacillus thuringiensis/patogenicidad , Bacillus thuringiensis/fisiología , Proteínas Bacterianas/genética , Transporte Biológico , Hierro/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Operón , Regiones Promotoras Genéticas
19.
Biomed Pharmacother ; 64(10): 672-80, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20970301

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) subtype C, which is most predominant in sub-Saharan Africa as well as in Asia and India, is the most prevalent subtype worldwide. A large number of transcription factor families have been shown to be involved in regulating HIV-1 gene expression in T lymphocytes and cells of the monocyte-macrophage lineage. Among these, proteins of the CCAAT/enhancer binding protein (C/EBP) family are of particular importance in regulating HIV-1 gene expression within cells of the monocytic lineage during the course of hematologic development and cellular activation. Few studies have examined the role of C/EBPs in long terminal repeat (LTR)-directed viral gene expression of HIV-1 subtypes other than subtype B. Within subtype B viruses, two functional C/EBP sites located upstream of the TATA box are required for efficient viral replication in cells of the monocyte-macrophage lineage. We report the identification of three putative subtype C C/EBP sites, upstream site 1 and 2 (C-US1 and C-US2) and downstream site 1 (C-DS1). C-US1 and C-DS1 were shown to form specific DNA-protein complexes with members of the C/EBP family (C/EBPα, ß, and δ). Functionally, within the U-937 monocytic cell line, subtype B and C LTRs were shown to be equally responsive to C/EBPß-2, although the basal activity of subtype C LTRs appeared to be higher. Furthermore, the synergistic interaction between C/EBPß-2 and Tat with the subtype C LTR was also observed in U-937 cells as previously demonstrated with the subtype B LTR.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Duplicado del Terminal Largo de VIH , VIH-1/genética , VIH-1/metabolismo , Secuencia de Bases , Sitios de Unión , Línea Celular , Regulación Viral de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Células Precursoras de Monocitos y Macrófagos/fisiología , Células Precursoras de Monocitos y Macrófagos/virología , Unión Proteica , Alineación de Secuencia , Análisis de Secuencia de ADN , Linfocitos T/fisiología , Linfocitos T/virología , TATA Box/genética , Transcripción Genética , Activación Transcripcional , Células U937 , Replicación Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
20.
J Biol Chem ; 282(36): 26111-21, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17635909

RESUMEN

For the important human pathogen Staphylococcus aureus, host heme is a vital source of nutrient iron during infection. Paradoxically, heme is also toxic at high concentrations and is capable of killing S. aureus. To maintain cellular heme homeostasis, S. aureus employs the coordinated actions of the heme sensing two-component system (HssRS) and the heme regulated transporter efflux pump (HrtAB). HssRS-dependent expression of HrtAB results in the alleviation of heme toxicity and tempered staphylococcal virulence. Although genetic experiments have defined the role of HssRS in the heme-dependent activation of hrtAB, the mechanism of this activation is not known. Furthermore, the global effect of HssRS on S. aureus gene expression has not been evaluated. Herein, we combine multivariable difference gel electrophoresis with mass spectrometry to identify the heme-induced cytoplasmic HssRS regulon. These experiments establish hrtAB as the major target of activation by HssRS in S. aureus. In addition, we show that signaling between the sensor histidine kinase HssS and the response regulator HssR is necessary for growth of S. aureus in high concentrations of heme. Finally, we show that a direct repeat DNA sequence within the hrtAB promoter is required for heme-induced, HssR-dependent expression driven by this promoter and that phosphorylated HssR binds to this direct repeat upon exposure of S. aureus to high concentrations of heme. Taken together, these data establish the mechanism for HssRS-dependent expression of HrtAB and, in turn, provide a functional understanding for how S. aureus avoids heme-mediated toxicity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Hemo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Transporte Biológico Activo/fisiología , Proteínas Portadoras/química , Proteínas Portadoras/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Electroforesis en Gel de Poliacrilamida , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Hemo/farmacología , Histidina Quinasa , Humanos , Hierro/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/fisiología , Proteínas Quinasas/química , Proteínas Quinasas/genética , Regulón/fisiología , Análisis de Secuencia de ADN , Transducción de Señal/efectos de los fármacos , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA