Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 599(7886): 650-656, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34732887

RESUMEN

Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease1. Yet, whether this change contributes to Parkinson's disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism-which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson's disease paradigm3,4.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Muerte Celular , Dendritas/metabolismo , Dendritas/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Levodopa/farmacología , Levodopa/uso terapéutico , Masculino , Ratones , Destreza Motora/efectos de los fármacos , NADH Deshidrogenasa/deficiencia , NADH Deshidrogenasa/genética , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/fisiopatología , Fenotipo , Sustancia Negra/citología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(15): e2113751119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394873

RESUMEN

Although mammalian retinal ganglion cells (RGCs) normally cannot regenerate axons nor survive after optic nerve injury, this failure is partially reversed by inducing sterile inflammation in the eye. Infiltrative myeloid cells express the axogenic protein oncomodulin (Ocm) but additional, as-yet-unidentified, factors are also required. We show here that infiltrative macrophages express stromal cell­derived factor 1 (SDF1, CXCL12), which plays a central role in this regard. Among many growth factors tested in culture, only SDF1 enhances Ocm activity, an effect mediated through intracellular cyclic AMP (cAMP) elevation and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation. SDF1 deficiency in myeloid cells (CXCL12flx/flxLysM-Cre−/+ mice) or deletion of the SDF1 receptor CXCR4 in RGCs (intraocular AAV2-Cre in CXCR4flx/flx mice) or SDF1 antagonist AMD3100 greatly suppresses inflammation-induced regeneration and decreases RGC survival to baseline levels. Conversely, SDF1 induces optic nerve regeneration and RGC survival, and, when combined with Ocm/cAMP, SDF1 increases axon regeneration to levels similar to those induced by intraocular inflammation. In contrast to deletion of phosphatase and tensin homolog (Pten), which promotes regeneration selectively from αRGCs, SDF1 promotes regeneration from non-αRGCs and enables the latter cells to respond robustly to Pten deletion; however, SDF1 surprisingly diminishes the response of αRGCs to Pten deletion. When combined with inflammation and Pten deletion, SDF1 enables many RGCs to regenerate axons the entire length of the optic nerve. Thus, SDF1 complements the effects of Ocm in mediating inflammation-induced regeneration and enables different RGC subtypes to respond to Pten deletion.


Asunto(s)
Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Axones/metabolismo , Quimiocina CXCL12/genética , Monocitos/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/metabolismo , Fosfohidrolasa PTEN/genética , Células Ganglionares de la Retina/fisiología
3.
Mol Psychiatry ; 27(5): 2563-2579, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33931727

RESUMEN

Heightened aggressive behavior is considered as one of the central symptoms of many neuropsychiatric disorders including autism, schizophrenia, and dementia. The consequences of aggression pose a heavy burden on patients and their families and clinicians. Unfortunately, we have limited treatment options for aggression and lack mechanistic insight into the causes of aggression needed to inform new efforts in drug discovery and development. Levels of proinflammatory cytokines in the periphery or cerebrospinal fluid were previously reported to correlate with aggressive traits in humans. However, it is still unknown whether cytokines affect brain circuits to modulate aggression. Here, we examined the functional role of interleukin 1ß (IL-1ß) in mediating individual differences in aggression using a resident-intruder mouse model. We found that nonaggressive mice exhibit higher levels of IL-1ß in the dorsal raphe nucleus (DRN), the major source of forebrain serotonin (5-HT), compared to aggressive mice. We then examined the effect of pharmacological antagonism and viral-mediated gene knockdown of the receptors for IL-1 within the DRN and found that both treatments consistently increased aggressive behavior of male mice. Aggressive mice also exhibited higher c-Fos expression in 5-HT neurons in the DRN compared to nonaggressive mice. In line with these findings, deletion of IL-1 receptor in the DRN enhanced c-Fos expression in 5-HT neurons during aggressive encounters, suggesting that modulation of 5-HT neuronal activity by IL-1ß signaling in the DRN controls expression of aggressive behavior.


Asunto(s)
Agresión , Núcleo Dorsal del Rafe , Interleucina-1beta , Serotonina , Agresión/fisiología , Animales , Núcleo Dorsal del Rafe/metabolismo , Humanos , Individualidad , Interleucina-1beta/metabolismo , Masculino , Ratones , Serotonina/metabolismo
5.
Neurobiol Dis ; 82: 487-494, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26232589

RESUMEN

Phosphatase and Tensin homolog deleted on chromosome 10 (PTEN) is a dual lipid-protein phosphatase known primarily as a growth preventing tumor suppressor. PTEN is also expressed in neurons, and pathways modulated by PTEN can influence neuronal function. Here we report a novel function of PTEN as a regulator of striatal dopamine signaling in a model of Parkinson's disease (PD). Blocking PTEN expression with an adeno-associated virus (AAV) vector expressing a small hairpin RNA (shRNA) resulted in reduced responses of cultured striatal neurons to dopamine, which appeared to be largely due to reduction in D2 receptor activation. Co-expression of shRNA-resistant wild-type and mutant forms of PTEN indicated that the lipid-phosphatase activity was essential for this effect. In both normal and Parkinsonian rats, inhibition of striatal PTEN in vivo resulted in motor dysfunction and impaired responses to dopamine, particularly D2 receptor agonists. Expression of PTEN mutants confirmed the lipid-phosphatase activity as critical, while co-expression of a dominant-negative form of Akt overcame the PTEN shRNA effect. These results identify PTEN as a key mediator of striatal responses to dopamine, and suggest that drugs designed to potentiate PTEN expression or activity, such as cancer chemotherapeutics, may also be useful for improving striatal responses to dopamine in conditions of dopamine depletion such as PD. This also suggests that strategies which increase Akt or decrease PTEN expression or function, such as growth factors to prevent neuronal death, may have a paradoxical effect on neurological functioning by inhibiting striatal responses to dopamine.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Actividad Motora/fisiología , Neuronas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Trastornos Parkinsonianos/fisiopatología , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , Cuerpo Estriado/efectos de los fármacos , Dependovirus , Agonistas de Dopamina/farmacología , Vectores Genéticos , Masculino , Actividad Motora/efectos de los fármacos , Mutación , Neuronas/efectos de los fármacos , Fosfohidrolasa PTEN/genética , Trastornos Parkinsonianos/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño , Ratas Sprague-Dawley , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo
6.
J Neuroimaging ; 34(3): 320-328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616297

RESUMEN

BACKGROUND AND PURPOSE: The purpose of this study is to evaluate the feasibility of using 3-dimensional (3D) ultra-short echo time (UTE) radial imaging method for measurement of the permeability of the blood-brain barrier (BBB) to gadolinium-based contrast agent. In this study, we propose to use the golden-angle radial sparse parallel (GRASP) method with 3D center-out trajectories for UTE, hence named as 3D UTE-GRASP. We first examined the feasibility of using 3D UTE-GRASP dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) for differentiating subtle BBB disruptions induced by focused ultrasound (FUS). Then, we examined the BBB permeability changes in Alzheimer's disease (AD) pathology using Alzheimer's disease transgenic mice (5xFAD) at different ages. METHODS: For FUS experiments, we used four Sprague Dawley rats at similar ages where we compared BBB permeability of each rat receiving the FUS sonication with different acoustic power (0.4-1.0 MPa). For AD transgenic mice experiments, we included three 5xFAD mice (6, 12, and 16 months old) and three wild-type mice (4, 8, and 12 months old). RESULTS: The result from FUS experiments showed a progressive increase in BBB permeability with increase of acoustic power (p < .05), demonstrating the sensitivity of DCE-MRI method for detecting subtle changes in BBB disruption. Our AD transgenic mice experiments suggest an early BBB disruption in 5xFAD mice, which is further impaired with aging. CONCLUSION: The results in this study substantiate the feasibility of using the proposed 3D UTE-GRASP method for detecting subtle BBB permeability changes expected in neurodegenerative diseases, such as AD.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Medios de Contraste , Estudios de Factibilidad , Imagen por Resonancia Magnética , Ratones Transgénicos , Ratas Sprague-Dawley , Barrera Hematoencefálica/diagnóstico por imagen , Animales , Ratones , Imagen por Resonancia Magnética/métodos , Ratas , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Permeabilidad Capilar/fisiología , Imagenología Tridimensional/métodos
7.
Methods Mol Biol ; 2418: 53-61, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35119659

RESUMEN

The ability to silence the expression of gene products in a chemically, spatially, and temporally specific manner in the brains of animals has enabled key breakthroughs in the field of behavioral neuroscience. Using this technique, estrogen receptor alpha (ERα) has been specifically implicated in a multitude of behaviors in mice, including sexual, aggressive, locomotor, and maternal behaviors, in a variety of brain regions, including the medial preoptic area, ventromedial hypothalamus, and amygdala. In this chapter, we describe the techniques involved in the generation of the small hairpin RNAs (shRNAs) specifically designed to silence ERα, the construction of the adeno-associated viral (AAV) vector for delivery of the shRNA, the procedures to confirm the silencing of ERα (in vitro and in vivo) and in vivo delivery of the shRNAs to the brains of animals.


Asunto(s)
Receptor alfa de Estrógeno , Roedores , Animales , Encéfalo/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Ratones , Área Preóptica/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Roedores/genética
8.
World Neurosurg ; 145: 567-573, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33348522

RESUMEN

The ability of ultrasonography to safely penetrate deeply into the brain has made it an attractive technology for neurological applications for almost 1 century. Having recognized that converging ultrasound waves could deliver high levels of energy to a target and spare the overlying and surrounding brain, early applications used craniotomies to allow transducers to contact the brain or dural surface. The development of transducer arrays that could permit the transit of sufficient numbers of ultrasound waves to deliver high energies to a target, even with the loss of energy from the skull, has now resulted in clinical systems that can permit noninvasive focused ultrasound procedures that leave the skull intact. Another major milestone in the field was the marriage of focused ultrasonography with magnetic resonance thermometry. This provides real-time feedback regarding the level and location of brain tissue heating, allowing for precise elevation of temperatures within a desired target to lead to focal therapeutic lesions. The major clinical use of this technology, at present, has been limited to treatment of refractory essential tremor and parkinsonian tremor, although the first study of this approach had targeted sensory thalamus for refractory pain, and new targets and disease indications are under study. Finally, focused ultrasonography can also be used at a lower frequency and energy level when combined with intravenous microbubbles to create cavitations, which will open the blood-brain barrier rather than ablate tissue. In the present review, we have discussed the historical and scientific foundations and current clinical applications of magnetic resonance-guided focused ultrasonography and the genesis and background that led to the use of this technique for focal blood-brain barrier disruption.


Asunto(s)
Temblor Esencial/diagnóstico por imagen , Monitorización Neurofisiológica Intraoperatoria/métodos , Imagen por Resonancia Magnética/métodos , Enfermedad de Parkinson/diagnóstico por imagen , Ultrasonografía Intervencional/métodos , Temblor Esencial/cirugía , Humanos , Enfermedad de Parkinson/cirugía , Termometría/métodos
9.
World Neurosurg ; 145: 581-589, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33348524

RESUMEN

Magnetic resonance-guided focused ultrasound (MRgFUS) is a cutting-edge technology that is changing the practice of movement disorders surgery. Given the noninvasive and innovative nature of this technology, there is great interest in expanding the use of MRgFUS to additional diseases and applications. Current approved applications target the motor thalamus to treat tremor, but clinical trials are exploring or plan to study noninvasive lesions with MRgFUS to ablate tumor cells in the brain as well as novel targets for movement disorders and brain regions associated with pain and epilepsy. Although there are additional potential indications for lesioning, the ability to improve function by destroying parts of the brain is still limited. However, MRgFUS can also be applied to a brain target after intravenous delivery of microbubbles to create cavitations and focally open the blood-brain barrier (BBB). This has already proven to be safe and technically feasible in human patients with Alzheimer's disease, and this action alone has potential to clear extracellular pathology associated with this and other neurodegenerative disorders. This also provides a foundation for noninvasive intravenous delivery of therapeutic molecules to precise brain targets after transient disruption of the BBB. Certain chemotherapies for brain tumors, immunotherapies, gene, and cell therapies are all examples of therapeutic or even restorative agents that normally will not enter the brain without direct infusion but which have been shown in preclinical studies to effectively traverse the BBB after transient disruption with MRgFUS. Here we will review these novel applications of MRgFUS to provide an overview of the extraordinary potential of this technology to expand future neurosurgical treatments of brain diseases.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética/métodos , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Enfermedades del Sistema Nervioso/cirugía , Terapias en Investigación/métodos , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/cirugía , Ultrasonido Enfocado de Alta Intensidad de Ablación/tendencias , Humanos , Imagen por Resonancia Magnética/tendencias , Microburbujas/uso terapéutico , Microburbujas/tendencias , Terapias en Investigación/tendencias
10.
J Neurosurg ; 130(3): 989-998, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29701544

RESUMEN

OBJECTIVE: Surgical infusion of gene therapy vectors has provided opportunities for biological manipulation of specific brain circuits in both animal models and human patients. Transient focal opening of the blood-brain barrier (BBB) by MR-guided focused ultrasound (MRgFUS) raises the possibility of noninvasive CNS gene therapy to target precise brain regions. However, variable efficiency and short follow-up of studies to date, along with recent suggestions of the potential for immune reactions following MRgFUS BBB disruption, all raise questions regarding the viability of this approach for clinical translation. The objective of the current study was to evaluate the efficiency, safety, and long-term stability of MRgFUS-mediated noninvasive gene therapy in the mammalian brain. METHODS: Focused ultrasound under the control of MRI, in combination with microbubbles consisting of albumin-coated gas microspheres, was applied to rat striatum, followed by intravenous infusion of an adeno-associated virus serotype 1/2 (AAV1/2) vector expressing green fluorescent protein (GFP) as a marker. Following recovery, animals were followed from several hours up to 15 months. Immunostaining for GFP quantified transduction efficiency and stability of expression. Quantification of neuronal markers was used to determine histological safety over time, while inflammatory markers were examined for evidence of immune responses. RESULTS: Transitory disruption of the BBB by MRgFUS resulted in efficient delivery of the AAV1/2 vector to the targeted rodent striatum, with 50%-75% of striatal neurons transduced on average. GFP transgene expression appeared to be stable over extended periods of time, from 2 weeks to 6 months, with evidence of ongoing stable expression as long as 16 months in a smaller cohort of animals. No evidence of substantial toxicity, tissue injury, or neuronal loss was observed. While transient inflammation from BBB disruption alone was noted for the first few days, consistent with prior observations, no evidence of brain inflammation was observed from 2 weeks to 6 months following MRgFUS BBB opening, despite delivery of a virus and expression of a foreign protein in target neurons. CONCLUSIONS: This study demonstrates that transitory BBB disruption using MRgFUS can be a safe and efficient method for site-specific delivery of viral vectors to the brain, raising the potential for noninvasive focal human gene therapy for neurological disorders.


Asunto(s)
Encéfalo/diagnóstico por imagen , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Animales , Barrera Alveolocapilar/patología , Encéfalo/patología , Dependovirus/inmunología , Técnicas de Transferencia de Gen/efectos adversos , Terapia Genética/efectos adversos , Vectores Genéticos/administración & dosificación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Inflamación/patología , Imagen por Resonancia Magnética , Masculino , Enfermedades del Sistema Nervioso/terapia , Ratas , Ratas Sprague-Dawley , Transgenes/genética , Ultrasonografía
11.
PLoS One ; 4(2): e4597, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19242547

RESUMEN

Mutations in PTEN induced kinase 1 (PINK1), a mitochondrial Ser/Thr kinase, cause an autosomal recessive form of Parkinson's disease (PD), PARK6. Here, we report that PINK1 exists as a dimer in mitochondrial protein complexes that co-migrate with respiratory chain complexes in sucrose gradients. PARK6 related mutations do not affect this dimerization and its associated complexes. Using in vitro cell culture systems, we found that mutant PINK1 or PINK1 knock-down caused deficits in mitochondrial respiration and ATP synthesis. Furthermore, proteasome function is impaired with a loss of PINK1. Importantly, these deficits are accompanied by increased alpha-synclein aggregation. Our results indicate that it will be important to delineate the relationship between mitochondrial functional deficits, proteasome dysfunction and alpha-synclein aggregation.


Asunto(s)
Mitocondrias/patología , Complejo de la Endopetidasa Proteasomal/deficiencia , Proteínas Quinasas/genética , alfa-Sinucleína/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Mutación , Fosforilación Oxidativa , Enfermedad de Parkinson
12.
Proc Natl Acad Sci U S A ; 103(42): 15710-5, 2006 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-17030790

RESUMEN

We investigated the effects of beta-estradiol on the locomotor behavior of female mice in a radial maze. Data comprising the total distance traveled during each arm entry were obtained from video records of six consecutive daily recording sessions. Distributions of these data were bimodal for both ovariectomized control and beta-estradiol-treated ovariectomized subjects. Data were fit with the sum of two gamma probability distributions. Three parameters of the analytic fits were useful for quantifying the effect of beta-estradiol on locomotor behavior: (i) the sampling distance (median of the total distance traveled during each arm entry in the short-distance peak of a bimodal distribution), (ii) the committed distance (median of the total per-arm-entry distance traveled in the long-distance peak), and (iii) the partition distance (distance represented by the minimum between the two peaks). Analysis showed that for sampling-distance arm entries beta-estradiol typically had little if any significant effect on female locomotor behavior, whereas it significantly increased the total distance traveled during committed-distance arm entries on the first 2 days of exposure to the empty maze. beta-Estradiol also increased the ability of females to discriminate between empty maze arms and arms that contained intact or castrated male mice and partially prevented loss of this capacity after removal of the males.


Asunto(s)
Estradiol/farmacología , Aprendizaje por Laberinto/fisiología , Actividad Motora/efectos de los fármacos , Animales , Castración , Interpretación Estadística de Datos , Femenino , Masculino , Matemática , Ratones , Actividad Motora/fisiología , Ovariectomía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA