Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(40): e202207175, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35876840

RESUMEN

2',3'-cGAMP is a cyclic A- and G-containing dinucleotide second messenger, which is formed upon cellular recognition of foreign cytosolic DNA as part of the innate immune response. The molecule binds to the adaptor protein STING, which induces an immune response characterized by the production of type I interferons and cytokines. The development of STING-binding molecules with both agonistic as well as antagonistic properties is currently of tremendous interest to induce or enhance antitumor or antiviral immunity on the one hand, or to treat autoimmune diseases on the other hand. To escape the host innate immune recognition, some viruses encode poxin endonucleases that cleave 2',3'-cGAMP. Here we report that dideoxy-2',3'-cGAMP (1) and analogs thereof, which lack the secondary ribose-OH groups, form a group of poxin-stable STING agonists. Despite their reduced affinity to STING, particularly the compound constructed from two A nucleosides, dideoxy-2',3'-cAAMP (2), features an unusually high antitumor response in mice.


Asunto(s)
Interferón Tipo I , Proteínas de la Membrana/genética , Nucleósidos , Animales , Antivirales , Citocinas , ADN , Endonucleasas , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Ratones , Nucleótidos Cíclicos , Nucleotidiltransferasas/metabolismo , Ribosa
2.
Chembiochem ; 21(15): 2214-2218, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187837

RESUMEN

The reliable detection of transcription events through the quantification of the corresponding mRNA is of paramount importance for the diagnostics of infections and diseases. The quantification and localization analysis of the transcripts of a particular gene allows disease states to be characterized more directly compared to an analysis on the transcriptome wide level. This is particularly needed for the early detection of virus infections as now required for emergent viral diseases, e. g. Covid-19. In situ mRNA analysis, however, is a formidable challenge and currently performed with sets of single-fluorophore-containing oligonucleotide probes that hybridize to the mRNA in question. Often a large number of probe strands (>30) are required to get a reliable signal. The more oligonucleotide probes are used, however, the higher the potential off-target binding effects that create background noise. Here, we used click chemistry and alkyne-modified DNA oligonucleotides to prepare multiple-fluorophore-containing probes. We found that these multiple-dye probes allow reliable detection and direct visualization of mRNA with only a very small number (5-10) of probe strands. The new method enabled the in situ detection of viral transcripts as early as 4 hours after infection.


Asunto(s)
Química Clic/métodos , Diagnóstico Precoz , Hibridación Fluorescente in Situ/métodos , Sondas de Oligonucleótidos/química , ARN Mensajero/análisis , ARN Viral/análisis , Alquinos/química , Betacoronavirus/genética , COVID-19 , Infecciones por Coronavirus/diagnóstico , Humanos , Oligodesoxirribonucleótidos/química , Pandemias , Neumonía Viral/diagnóstico , SARS-CoV-2
3.
Chemistry ; 26(70): 16782-16792, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32706904

RESUMEN

Nucleic acid click chemistry was used to prepare a family of chemically modified triplex forming oligonucleotides (TFOs) for application as a new gene-targeted technology. Azide-bearing phenanthrene ligands-designed to promote triplex stability and copper binding-were 'clicked' to alkyne-modified parallel TFOs. Using this approach, a library of TFO hybrids was prepared and shown to effectively target purine-rich genetic elements in vitro. Several of the hybrids provide significant stabilisation toward melting in parallel triplexes (>20 °C) and DNA damage can be triggered upon copper binding in the presence of added reductant. Therefore, the TFO and 'clicked' ligands work synergistically to provide sequence-selectivity to the copper cutting unit which, in turn, confers high stabilisation to the DNA triplex. To extend the boundaries of this hybrid system further, a click chemistry-based di-copper binding ligand was developed to accommodate designer ancillary ligands such as DPQ and DPPZ. When this ligand was inserted into a TFO, a dramatic improvement in targeted oxidative cleavage is afforded.


Asunto(s)
Química Clic , ADN/química , Marcación de Gen/métodos , Oligonucleótidos/química , Cobre/química , Daño del ADN , Ligandos , Conformación de Ácido Nucleico , Oxidación-Reducción
4.
Chemistry ; 25(8): 2089-2095, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30536650

RESUMEN

2'3'-cGAMP is an uncanonical cyclic dinucleotide where one A and one G base are connected via a 3'-5' and a unique 2'-5' linkage. The molecule is produced by the cyclase cGAS in response to cytosolic DNA binding. cGAMP activates STING and hence one of the most powerful pathways of innate immunity. cGAMP analogues with uncharged linkages that feature better cellular penetrability are currently highly desired. Here, the synthesis of a cGAMP analogue with one amide and one triazole linkage is reported. The molecule is best prepared via a first CuI -catalyzed click reaction, which establishes the triazole, while the cyclization is achieved by macrolactamization.

5.
Chembiochem ; 18(17): 1716-1720, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28640486

RESUMEN

The in vivo incorporation of alkyne-modified bases into the genome of cells is today the basis for the efficient detection of cell proliferation. Cells are grown in the presence of ethinyl-dU (EdU), fixed and permeabilised. The incorporated alkynes are then efficiently detected by using azide-containing fluorophores and the CuI -catalysed alkyne-azide click reaction. For a world in which constant improvement in the sensitivity of a given method is driving diagnostic advancement, we developed azide- and alkyne-modified dendrimers that allow the establishment of sandwich-type detection assays that show significantly improved signal intensities and signal-to-noise ratios far beyond that which is currently possible.


Asunto(s)
ADN/metabolismo , Dendrímeros/química , Colorantes Fluorescentes/química , Alquinos/química , Azidas/química , Catálisis , Proliferación Celular , Química Clic , Cobre/química , Reacción de Cicloadición , ADN/química , Células HeLa , Humanos , Microscopía Fluorescente
6.
Angew Chem Int Ed Engl ; 55(39): 11797-800, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27561097

RESUMEN

5-Formyl-2'-deoxycytosine (fdC) is a recently discovered epigenetic base in the genome of stem cells, with yet unknown functions. Sequencing data show that the base is enriched in CpG islands of promoters and hence likely involved in the regulation of transcription during cellular differentiation. fdC is known to be recognized and excised by the enzyme thymine-DNA-glycosylase (Tdg). As such, fdC is believed to function as an intermediate during active demethylation. In order to understand the function of the new epigenetic base fdC, it is important to analyze its formation and removal at defined genomic sites. Here, we report a new method that combines sequence-specific chemical derivatization of fdC with droplet digital PCR that enables such analysis. We show initial data, indicating that the repair protein Tdg removes only 50 % of the fdCs at a given genomic site, arguing that fdC is a semipermanent base.


Asunto(s)
Islas de CpG , Citosina/análogos & derivados , Timina ADN Glicosilasa/metabolismo , Animales , Secuencia de Bases , Células Cultivadas , Química Clic , Citosina/análisis , Citosina/metabolismo , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/metabolismo , Timina ADN Glicosilasa/genética
7.
Front Microbiol ; 14: 1243427, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37655342

RESUMEN

Neisseria gonorrhoeae (gonococcus) is an obligate human pathogen and the etiological agent of the sexually transmitted disease gonorrhea. The rapid rise in gonococcal resistance to all currently available antimicrobials has become a significant public health burden and the need to develop novel therapeutic and prophylactic tools is now a global priority. While high-throughput screening methods allowed rapid discovery of extremely potent monoclonal antibodies (mAbs) against viral pathogens, the field of bacteriology suffers from the lack of assays that allow efficient screening of large panels of samples. To address this point, we developed luminescence-based (L-ABA) and resazurin-based (R-ABA) antibody bactericidal assays that measure N. gonorrhoeae metabolic activity as a proxy of bacterial viability. Both L-ABA and R-ABA are applicable on the large scale for the rapid identification of bactericidal antibodies and were validated by conventional methods. Implementation of these approaches will be instrumental to the development of new medications and vaccines against N. gonorrhoeae and other bacterial pathogens to support the fight against antimicrobial resistance.

8.
Front Microbiol ; 13: 1080059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590399

RESUMEN

Antimicrobial resistance (AMR) is a quickly advancing threat for human health worldwide and almost 5 million deaths are already attributable to this phenomenon every year. Since antibiotics are failing to treat AMR-bacteria, new tools are needed, and human monoclonal antibodies (mAbs) can fill this role. In almost 50 years since the introduction of the first technology that led to mAb discovery, enormous leaps forward have been made to identify and develop extremely potent human mAbs. While their usefulness has been extensively proved against viral pathogens, human mAbs have yet to find their space in treating and preventing infections from AMR-bacteria and fully conquer the field of infectious diseases. The novel and most innovative technologies herein reviewed can support this goal and add powerful tools in the arsenal of weapons against AMR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA