Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Neurosci ; 20(1): 26, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182018

RESUMEN

BACKGROUND: Animal responses to thermal stimuli involve intricate contributions of genetics, neurobiology and physiology, with temperature variation providing a pervasive environmental factor for natural selection. Thermal behavior thus exemplifies a dynamic trait that requires non-trivial phenotypic summaries to appropriately capture the trait in response to a changing environment. To characterize the deterministic and plastic components of thermal responses, we developed a novel micro-droplet assay of nematode behavior that permits information-dense summaries of dynamic behavioral phenotypes as reaction norms in response to increasing temperature (thermal tolerance curves, TTC). RESULTS: We found that C. elegans TTCs shift predictably with rearing conditions and developmental stage, with significant differences between distinct wildtype genetic backgrounds. Moreover, after screening TTCs for 58 C. elegans genetic mutant strains, we determined that genes affecting thermosensation, including cmk-1 and tax-4, potentially play important roles in the behavioral control of locomotion at high temperature, implicating neural decision-making in TTC shape rather than just generalized physiological limits. However, expression of the transient receptor potential ion channel TRPA-1 in the nervous system is not sufficient to rescue rearing-dependent plasticity in TTCs conferred by normal expression of this gene, indicating instead a role for intestinal signaling involving TRPA-1 in the adaptive plasticity of thermal performance. CONCLUSIONS: These results implicate nervous system and non-nervous system contributions to behavior, in addition to basic cellular physiology, as key mediators of evolutionary responses to selection from temperature variation in nature.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Canales Iónicos/fisiología , Locomoción/fisiología , Canal Catiónico TRPA1/fisiología , Sensación Térmica/fisiología , Adaptación Fisiológica/genética , Animales , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Calor , Canales Iónicos/genética , Estadios del Ciclo de Vida/fisiología , Mutación , Sistema Nervioso/metabolismo , Canal Catiónico TRPA1/biosíntesis
2.
J Exp Biol ; 216(Pt 5): 850-8, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23155083

RESUMEN

Temperature-dependent behaviours in Caenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of phenotypic evolution, particularly contrasts of the classic model C. elegans with C. briggsae. And yet few studies have investigated natural genetic variation in behaviour in any nematode. Here we measure thermotaxis and isothermal tracking behaviour in genetically distinct strains of C. briggsae, further motivated by the latitudinal differentiation in C. briggsae that is associated with temperature-dependent fitness differences in this species. We demonstrate that C. briggsae performs thermotaxis and isothermal tracking largely similar to that of C. elegans, with a tendency to prefer its rearing temperature. Comparisons of these behaviours among strains reveal substantial heritable natural variation within each species that corresponds to three general patterns of behavioural response. However, intraspecific genetic differences in thermal behaviour often exceed interspecific differences. These patterns of temperature-dependent behaviour motivate further development of C. briggsae as a model system for dissecting the genetic underpinnings of complex behavioural traits.


Asunto(s)
Caenorhabditis/fisiología , Fenotipo , Animales , Regulación de la Temperatura Corporal , Caenorhabditis/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Carácter Cuantitativo Heredable , Especificidad de la Especie , Temperatura
3.
G3 (Bethesda) ; 9(7): 2135-2151, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31048400

RESUMEN

Thermal reaction norms pervade organismal traits as stereotyped responses to temperature, a fundamental environmental input into sensory and physiological systems. Locomotory behavior represents an especially plastic read-out of animal response, with its dynamic dependence on environmental stimuli presenting a challenge for analysis and for understanding the genomic architecture of heritable variation. Here we characterize behavioral reaction norms as thermal performance curves for the nematode Caenorhabditis briggsae, using a collection of 23 wild isolate genotypes and 153 recombinant inbred lines to quantify the extent of genetic and plastic variation in locomotory behavior to temperature changes. By reducing the dimensionality of the multivariate phenotypic response with a function-valued trait framework, we identified genetically distinct behavioral modules that contribute to the heritable variation in the emergent overall behavioral thermal performance curve. Quantitative trait locus mapping isolated regions on Chromosome II associated with locomotory activity at benign temperatures and Chromosome V loci related to distinct aspects of sensitivity to high temperatures, with each quantitative trait locus explaining up to 28% of trait variation. These findings highlight how behavioral responses to environmental inputs as thermal reaction norms can evolve through independent changes to genetically distinct modular components of such complex phenotypes.


Asunto(s)
Conducta Animal , Interacción Gen-Ambiente , Variación Genética , Fenotipo , Temperatura , Animales , Caenorhabditis , Mapeo Cromosómico , Estudios de Asociación Genética , Genotipo , Locomoción , Modelos Biológicos , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
4.
eNeuro ; 6(4)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31371455

RESUMEN

Associative learning and sensory integration are two behavioral processes that involve the sensation and processing of stimuli followed by an altered behavioral response to these stimuli, with learning requiring memory formation and retrieval. We found that the cellular and molecular actions of scd-2 dissociate sensory integration and associative learning. This was discovered through investigation of a Caenorhabditis elegans mutation (lrn-2 (mm99)) affecting both processes. After mapping and sequencing, lrn-2 was found to be allelic to the gene, scd-2scd-2-mediated associative learning and sensory integration operate in separate neurons as separate processes. We also find that memories can form from associations that are processed and stored independently from the integration of stimuli preceding an immediate behavioral decision.


Asunto(s)
Aprendizaje por Asociación/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Neuronas/fisiología , Proteínas Tirosina Quinasas/fisiología , Sensación/fisiología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Mutación , Proteínas Tirosina Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA