Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Immunol ; 197(1): 222-32, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27233968

RESUMEN

Glucocorticoids are extensively used to treat inflammatory diseases; however, their chronic intake increases the risk for mycobacterial infections. Meanwhile, the effects of glucocorticoids on innate host responses are incompletely understood. In this study, we investigated the direct effects of glucocorticoids on antimycobacterial host defense in primary human macrophages. We found that glucocorticoids triggered the expression of cathelicidin, an antimicrobial critical for antimycobacterial responses, independent of the intracellular vitamin D metabolism. Despite upregulating cathelicidin, glucocorticoids failed to promote macrophage antimycobacterial activity. Gene expression profiles of human macrophages treated with glucocorticoids and/or IFN-γ, which promotes induction of cathelicidin, as well as antimycobacterial activity, were investigated. Using weighted gene coexpression network analysis, we identified a module of highly connected genes that was strongly inversely correlated with glucocorticoid treatment and associated with IFN-γ stimulation. This module was linked to the biological functions autophagy, phagosome maturation, and lytic vacuole/lysosome, and contained the vacuolar H(+)-ATPase subunit a3, alias TCIRG1, a known antimycobacterial host defense gene, as a top hub gene. We next found that glucocorticoids, in contrast with IFN-γ, failed to trigger expression and phagolysosome recruitment of TCIRG1, as well as to promote lysosome acidification. Finally, we demonstrated that the tyrosine kinase inhibitor imatinib induces lysosome acidification and antimicrobial activity in glucocorticoid-treated macrophages without reversing the anti-inflammatory effects of glucocorticoids. Taken together, we provide evidence that the induction of cathelicidin by glucocorticoids is not sufficient for macrophage antimicrobial activity, and identify the vacuolar H(+)-ATPase as a potential target for host-directed therapy in the context of glucocorticoid therapy.


Asunto(s)
Antituberculosos/farmacología , Mesilato de Imatinib/farmacología , Macrófagos/efectos de los fármacos , Mycobacterium bovis/inmunología , Fagosomas/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Antiinflamatorios/farmacología , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Autofagia , Células Cultivadas , Regulación de la Expresión Génica , Glucocorticoides/farmacología , Humanos , Concentración de Iones de Hidrógeno , Inmunidad Innata , Interferón gamma/metabolismo , Macrófagos/fisiología , Tuberculosis/inmunología , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Catelicidinas
2.
Immunology ; 148(4): 420-32, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27177697

RESUMEN

As part of the innate host response neutrophils release neutrophil extracellular traps (NETs), protein:DNA complexes that contain a number of antimicrobial peptides (AMPs), such as cathelicidin. Human cathelicidin in its active form, LL37, has potent antimicrobial activity against bacteria. However, whether LL37 derived from NETs contributes to antimicrobial activity against intracellular pathogens remains unclear. Here, we report that NETs induced by mycobacteria contain cathelicidin. Human macrophages internalized NET-bound cathelicidin, which is transported to lysosomal compartments. Furthermore, using a model of in vitro-generated LL37:DNA complexes we found that LL37 derived from such complexes attacks mycobacteria in macrophage phagolysosomes resulting in antimicrobial activity. Taken together, our results suggest a mechanism by which LL37 in complex with DNA contributes to host defence against intracellular bacteria in human macrophages.


Asunto(s)
Catelicidinas/metabolismo , ADN/metabolismo , Macrófagos/inmunología , Mycobacterium bovis/inmunología , Neutrófilos/inmunología , Fagosomas/metabolismo , Tuberculosis/inmunología , Péptidos Catiónicos Antimicrobianos , Catelicidinas/química , Catelicidinas/inmunología , Células Cultivadas , ADN/química , ADN/inmunología , Endocitosis , Trampas Extracelulares/metabolismo , Humanos , Inmunidad Innata , Espacio Intracelular , Macrófagos/microbiología , Activación Neutrófila , Neutrófilos/microbiología
3.
Transfus Med Hemother ; 43(4): 275-281, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27721703

RESUMEN

Cardiac stem cell therapy holds great potential to prompt myocardial regeneration in patients with ischemic heart disease. The selection of the most suitable cell type is pivotal for its successful application. Various cell types, including crude bone marrow mononuclear cells, skeletal myoblast, and hematopoietic and endothelial progenitors, have already advanced into the clinical arena based on promising results from different experimental and preclinical studies. However, most of these so-called first-generation cell types have failed to fully emulate the promising preclinical data in clinical trials, resulting in heterogeneous outcomes and a critical lack of translation. Therefore, different next-generation cell types are currently under investigation for the treatment of the diseased myocardium. This review article provides an overview of current stem cell therapy concepts, including the application of cardiac stem (CSCs) and progenitor cells (CPCs) and lineage commitment via guided cardiopoiesis from multipotent cells such as mesenchymal stem cells (MSCs) or pluripotent cells such as embryonic and induced pluripotent stem cells. Furthermore, it introduces new strategies combining complementary cell types, such as MSCs and CSCs/CPCs, which can yield synergistic effects to boost cardiac regeneration.

4.
J Gen Virol ; 96(Pt 3): 601-606, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25385869

RESUMEN

In simian virus 40 (SV40) and several other polyomaviruses, the TATA box of the early promoter is embedded in an AT tract that is also an essential part of the replication origin. We generated an 'AT trap', an SV40 genome lacking the AT tract and unable to grow in CV-1 monkey cells. Co-transfection of the AT trap with oligonucleotides containing AT tracts of human polyomaviruses, a poly(A : T) tract or variants of the SV40 WT sequence all restored infectious virus. In a transfection of the AT trap without a suitable oligonucleotide, an AT-rich segment was incorporated, stemming either from bovine (calf serum) or monkey (host cell) DNA. Similarly, when cells were grown with human serum, a human DNA segment was captured by SV40 to substitute for the missing AT stretch. We conclude that the virus is quite opportunistic in accepting heterologous substitutes, and that even low-abundance DNA from serum can be incorporated into the viral genome.


Asunto(s)
ADN Viral/genética , Regiones Promotoras Genéticas/fisiología , Virus 40 de los Simios/genética , Virus 40 de los Simios/fisiología , Replicación Viral/fisiología , Animales , Composición de Base , Secuencia de Bases , Línea Celular , Genoma Viral , Haplorrinos , Humanos , Regiones Promotoras Genéticas/genética , Virus Reordenados
6.
Nat Microbiol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009691

RESUMEN

Influenza A viruses (IAV) pose substantial burden on human and animal health. Avian, swine and human IAV bind sialic acid on host glycans as receptor, whereas some bat IAV require MHC class II complexes for cell entry. It is unknown how this difference evolved and whether dual receptor specificity is possible. Here we show that human H2N2 IAV and related avian H2N2 possess dual receptor specificity in cell lines and primary human airway cultures. Using sialylation-deficient cells, we reveal that entry via MHC class II is independent of sialic acid. We find that MHC class II from humans, pigs, ducks, swans and chickens but not bats can mediate H2 IAV entry and that this is conserved in Eurasian avian H2. Our results demonstrate that IAV can possess dual receptor specificity for sialic acid and MHC class II, and suggest a role for MHC class II-dependent entry in zoonotic IAV infections.

7.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166079, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476785

RESUMEN

Transport proteins are essential for cells in allowing the exchange of substances between cells and their environment across the lipid bilayer forming a tight barrier. Membrane lipids modulate the function of transmembrane proteins such as transporters in two ways: Lipids are tightly and specifically bound to transport proteins and in addition they modulate from the bulk of the lipid bilayer the function of transport proteins. This overview summarizes currently available information at the ultrastructural level on lipids tightly bound to transport proteins and the impact of altered bulk membrane lipid composition. Human diseases leading to altered lipid homeostasis will lead to altered membrane lipid composition, which in turn affect the function of transporter proteins.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Transporte Biológico , Humanos , Unión Proteica
8.
Surgery ; 169(4): 894-902, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33422346

RESUMEN

BACKGROUND: Long-term ex situ liver perfusion may rescue injured grafts. Little is known about bile flow during long-term perfusion. We report the development of a bile stimulation protocol and motivate bile flow as a viability marker during long-term ex situ liver perfusion. METHODS: Porcine and human livers were perfused with blood at close to physiologic conditions. Our perfusion protocol was established during phase 1 with porcine livers (n = 23). Taurocholic acid was applied to stimulate bile flow. The addition of piperacillin-tazobactam (tazobac) and methylprednisolone was modified from daily bolus to controlled continuous application. We adapted the protocol to human livers (n = 12) during phase 2. Taurocholic acid was replaced with medical grade ursodeoxycholic acid. RESULTS: Phase 2: Despite administering taurocholic acid, bile flow declined from 29.3 ± 6.5 to 9.3 ± 1.4 mL/h (P < .001). Shortly after bolus of tazobac/methylprednisolone, bile flow recovered to 39.0 ± 9.7 mL/h with a decrease of solid bile components. This implied bile salt independent bile flow stimulation by tazobac/methylprednisolone. Phase 2: Ursodeoxycholic acid was shown to stimulate bile flow ex situ in human livers. Eight livers were perfused successfully for 1 week with continuous bile flow. The other 4 livers demonstrated progressive cell death, of which only 1 exhibited bile flow. CONCLUSION: A lack of bile flow stimulation leads to a decline in bile flow and is not necessarily a sign of deterioration in liver function. Proper administration of stimulators can induce constant bile flow during ex situ liver perfusion for up to 1 week. Medical grade ursodeoxycholic acid is a suitable replacement for nonmedical grade taurocholic acid. The presence of bile flow alone is not sufficient to assess liver viability.


Asunto(s)
Bilis/metabolismo , Hígado/metabolismo , Perfusión , Animales , Bilis/química , Biomarcadores , Biopsia , Femenino , Supervivencia de Injerto , Humanos , Técnicas In Vitro , Pruebas de Función Hepática , Trasplante de Hígado , Modelos Animales , Perfusión/métodos , Porcinos
9.
NPJ Regen Med ; 2: 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29302353

RESUMEN

Acute myocardial infarction and chronic heart failure rank among the major causes of morbidity and mortality worldwide. Except for heart transplantation, current therapy options only treat the symptoms but do not cure the disease. Stem cell-based therapies represent a possible paradigm shift for cardiac repair. However, most of the first-generation approaches displayed heterogeneous clinical outcomes regarding efficacy. Stemming from the desire to closely match the target organ, second-generation cell types were introduced and rapidly moved from bench to bedside. Unfortunately, debates remain around the benefit of stem cell therapy, optimal trial design parameters, and the ideal cell type. Aiming at highlighting controversies, this article provides a critical overview of the translation of first-generation and second-generation cell types. It further emphasizes the importance of understanding the mechanisms of cardiac repair and the lessons learned from first-generation trials, in order to improve cell-based therapies and to potentially finally implement cell-free therapies.

10.
Eur J Cell Biol ; 85(11): 1167-77, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16949178

RESUMEN

Angiogenesis is a process required not only for embryonal development but is encountered in wound healing and in pathological situations such as tumour growth. In vitro, formation of capillary-like structures can be induced by seeding human microvascular endothelial cells (HDMECs) on top of a fibrin matrix in the presence of phorbol 12-myristate 13-acetate (PMA) as a stimulating agent. In this study, we show that supernatants collected from high-invasive melanoma cells (BLM) induce the formation of tubular structures similar to PMA treatment whereas supernatants from low-invasive cells (WM164) did not. Analysis of proteins secreted into the supernatant of both melanoma cell lines identified differential expression of several pro-angiogenic proteins in high- and low-invasive melanoma cells. Vascular endothelial growth factor (VEGF) was strongly expressed by high- but not by low-invasive melanoma cells. Neutralisation of VEGF as well as inhibition of matrix metalloproteases (MMPs) using the broad spectrum MMP inhibitor 1,10-phenanthroline, both strongly reduced the melanoma-induced tube formation. PMA treatment of HDMECs on a fibrin matrix stimulated MT1-MMP synthesis, indicating that this protease is involved in PMA-induced angiogenesis. In addition, stimulation of HDMECs by supernatants of BLM melanoma cells resulted in a strong induction of ADAM-15, which is known to act as a metalloproteinase. In conclusion, these results show that VEGF released by melanoma cells is an important mediator of neo-vascularisation and that this process depends on the presence of metalloproteinases.


Asunto(s)
Endotelio Vascular/crecimiento & desarrollo , Melanoma/metabolismo , Metaloproteasas/metabolismo , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/enzimología , Fibrina/efectos de los fármacos , Fibrina/metabolismo , Geles , Humanos , Melanoma/patología , Metaloendopeptidasas/metabolismo , Metaloproteasas/antagonistas & inhibidores , Metaloproteasas/genética , Fenantrolinas/farmacología , Inhibidores de Proteasas/farmacología , Acetato de Tetradecanoilforbol/farmacología , Células Tumorales Cultivadas
11.
Stem Cells Int ; 2016: 9098523, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27073399

RESUMEN

More people die annually from cardiovascular diseases than from any other cause. In particular, patients who suffer from myocardial infarction may be affected by ongoing adverse remodeling processes of the heart that may ultimately lead to heart failure. The introduction of stem and progenitor cell-based applications has raised substantial hope for reversing these processes and inducing cardiac regeneration. However, current stem cell therapies using single-cell suspensions have failed to demonstrate long-lasting efficacy due to the overall low retention rate after cell delivery to the myocardium. To overcome this obstacle, the concept of 3D cell culture techniques has been proposed to enhance therapeutic efficacy and cell engraftment based on the simulation of an in vivo-like microenvironment. Of great interest is the use of so-called microtissues or spheroids, which have evolved from their traditional role as in vitro models to their novel role as therapeutic agents. This review will provide an overview of the therapeutic potential of microtissues by addressing primarily cardiovascular regeneration. It will accentuate their advantages compared to other regenerative approaches and summarize the methods for generating clinically applicable microtissues. In addition, this review will illustrate the unique properties of the microenvironment within microtissues that makes them a promising next-generation therapeutic approach.

13.
J Biol Chem ; 282(42): 30785-93, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17704059

RESUMEN

ADAM-9 belongs to a family of transmembrane, disintegrin-containing metalloproteinases involved in protein ectodomain shedding and cell-cell and cell-matrix interactions. The aim of this study was to analyze the expression of ADAM-9 in skin and to assess the role of this proteolytic/adhesive protein in skin physiology. In normal skin, ADAM-9 expression was detected in both the epidermis and dermis and in vitro in keratinocytes and fibroblasts. Here we report that ADAM-9 functions as a cell adhesion molecule via its disintegrin-cysteine-rich domain. Using solid phase binding assays and antibody inhibition experiments, we demonstrated that the recombinant disintegrin-cysteine-rich domain of ADAM-9 specifically interacts with the beta1 integrin subunit on keratinocytes. This was corroborated by co-immunoprecipitation. In addition, engagement of integrin receptors by the disintegrin-cysteine-rich domain resulted in ERK phosphorylation and increased MMP-9 synthesis. Treatment with the ERK inhibitor PD98059 inhibited MMP-9 induction. Furthermore, the presence of the soluble disintegrin-cysteine-rich domain did not interfere with cell migration on different substrates. However, keratinocytes adhering to the immobilized disintegrin-cysteine-rich domain showed increased motility, which was partially due to the induction of MMP-9 secretion. In summary, our results indicate that the ADAM-9 adhesive domain plays a role in regulating the motility of cells by interaction with beta1 integrins and modulates MMP synthesis.


Asunto(s)
Proteínas ADAM/biosíntesis , Moléculas de Adhesión Celular/biosíntesis , Movimiento Celular/fisiología , Desintegrinas/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Queratinocitos/enzimología , Proteínas de la Membrana/biosíntesis , Fenómenos Fisiológicos de la Piel , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Dermis/citología , Dermis/enzimología , Desintegrinas/antagonistas & inhibidores , Desintegrinas/genética , Células Epidérmicas , Epidermis/enzimología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flavonoides/farmacología , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Queratinocitos/citología , Metaloproteinasa 9 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/genética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Fosforilación/efectos de los fármacos , Estructura Terciaria de Proteína/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA