Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell ; 153(3): 614-27, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622245

RESUMEN

Protein degradation by the ubiquitin-proteasome system is central to cell homeostasis and survival. Defects in this process are associated with diseases such as cancer and neurodegenerative disorders. The 26S proteasome is a large protease complex that degrades ubiquitinated proteins. Here, we show that ADP-ribosylation promotes 26S proteasome activity in both Drosophila and human cells. We identify the ADP-ribosyltransferase tankyrase (TNKS) and the 19S assembly chaperones dp27 and dS5b as direct binding partners of the proteasome regulator PI31. TNKS-mediated ADP-ribosylation of PI31 drastically reduces its affinity for 20S proteasome α subunits to relieve 20S repression by PI31. Additionally, PI31 modification increases binding to and sequestration of dp27 and dS5b from 19S regulatory particles, promoting 26S assembly. Inhibition of TNKS by either RNAi or a small-molecule inhibitor, XAV939, blocks this process to reduce 26S assembly. These results unravel a mechanism of proteasome regulation that can be targeted with existing small-molecule inhibitors.


Asunto(s)
Drosophila melanogaster/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Tanquirasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Células HEK293 , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
2.
Nat Rev Mol Cell Biol ; 16(6): 329-44, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25991373

RESUMEN

All life ends in death, but perhaps one of life's grander ironies is that it also depends on death. Cell-intrinsic suicide pathways, termed programmed cell death (PCD), are crucial for animal development, tissue homeostasis and pathogenesis. Originally, PCD was almost synonymous with apoptosis; recently, however, alternative mechanisms of PCD have been reported. Here, we provide an overview of several distinct PCD mechanisms, namely apoptosis, autophagy and necroptosis. In addition, we discuss the complex signals that emanate from dying cells, which can either trigger regeneration or instruct additional killing. Further advances in understanding the physiological roles of the various mechanisms of cell death and their associated signals will be important to selectively manipulate PCD for therapeutic purposes.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Transducción de Señal/fisiología , Animales , Humanos
3.
Cell ; 147(4): 742-58, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22078876

RESUMEN

Programmed cell death (PCD) plays a fundamental role in animal development and tissue homeostasis. Abnormal regulation of this process is associated with a wide variety of human diseases, including immunological and developmental disorders, neurodegeneration, and cancer. Here, we provide a brief historical overview of the field and reflect on the regulation, roles, and modes of PCD during animal development. We also discuss the function and regulation of apoptotic proteins, including caspases, the key executioners of apoptosis, and review the nonlethal functions of these proteins in diverse developmental processes, such as cell differentiation and tissue remodeling. Finally, we explore a growing body of work about the connections between apoptosis, stem cells, and cancer, focusing on how apoptotic cells release a variety of signals to communicate with their cellular environment, including factors that promote cell division, tissue regeneration, and wound healing.


Asunto(s)
Apoptosis , Desarrollo Embrionario , Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Animales , Humanos , Morfogénesis , Células Madre/citología
4.
Cell ; 145(3): 371-82, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21529711

RESUMEN

The ubiquitin-proteasome system catalyzes the degradation of intracellular proteins. Although ubiquitination of proteins determines their stabilities, there is growing evidence that proteasome function is also regulated. We report the functional characterization of a conserved proteasomal regulatory complex. We identified DmPI31 as a binding partner of the F box protein Nutcracker, a component of an SCF ubiquitin ligase (E3) required for caspase activation during sperm differentiation in Drosophila. DmPI31 binds Nutcracker via a conserved mechanism that is also used by mammalian FBXO7 and PI31. Nutcracker promotes DmPI31 stability, which is necessary for caspase activation, proteasome function, and sperm differentiation. DmPI31 can activate 26S proteasomes in vitro, and increasing DmPI31 levels suppresses defects caused by diminished proteasome activity in vivo. Furthermore, loss of DmPI31 function causes lethality, cell-cycle abnormalities, and defects in protein degradation, demonstrating that DmPI31 is physiologically required for normal proteasome activity.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Proteínas F-Box/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Caspasas/metabolismo , Línea Celular , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Proteoma/análisis , Alineación de Secuencia , Espermatogénesis , Testículo/metabolismo
5.
Development ; 146(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30796047

RESUMEN

Self-renewal of intestinal stem cells is controlled by Wingless/Wnt-ß catenin signaling in both Drosophila and mammals. As Axin is a rate-limiting factor in Wingless signaling, its regulation is essential. Iduna is an evolutionarily conserved ubiquitin E3 ligase that has been identified as a crucial regulator for degradation of ADP-ribosylated Axin and, thus, of Wnt/ß-catenin signaling. However, its physiological significance remains to be demonstrated. Here, we generated loss-of-function mutants of Iduna to investigate its physiological role in Drosophila Genetic depletion of Iduna causes the accumulation of both Tankyrase and Axin. Increase of Axin protein in enterocytes non-autonomously enhanced stem cell divisions in the Drosophila midgut. Enterocytes secreted Unpaired proteins and thereby stimulated the activity of the JAK-STAT pathway in intestinal stem cells. A decrease in Axin gene expression suppressed the over-proliferation of stem cells and restored their numbers to normal levels in Iduna mutants. These findings suggest that Iduna-mediated regulation of Axin proteolysis is essential for tissue homeostasis in the Drosophila midgut.


Asunto(s)
Proteína Axina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Intestinos/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Células Madre/citología , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Wnt1/metabolismo , Animales , Sistemas CRISPR-Cas , Proliferación Celular , Cruzamientos Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Homeostasis , Masculino , Modelos Genéticos , Mutación , Interferencia de ARN , Proteínas Recombinantes/metabolismo , Transducción de Señal , Tanquirasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(49): 24639-24650, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31754024

RESUMEN

Proteasome-mediated degradation of intracellular proteins is essential for cell function and survival. The proteasome-binding protein PI31 (Proteasomal Inhibitor of 31kD) promotes 26S assembly and functions as an adapter for proteasome transport in axons. As localized protein synthesis and degradation is especially critical in neurons, we generated a conditional loss of PI31 in spinal motor neurons (MNs) and cerebellar Purkinje cells (PCs). A cKO of PI31 in these neurons caused axon degeneration, neuronal loss, and progressive spinal and cerebellar neurological dysfunction. For both MNs and PCs, markers of proteotoxic stress preceded axonal degeneration and motor dysfunction, indicating a critical role for PI31 in neuronal homeostasis. The time course of the loss of MN and PC function in developing mouse central nervous system suggests a key role for PI31 in human neurodegenerative diseases.


Asunto(s)
Proteínas Portadoras/metabolismo , Neuronas Motoras/fisiología , Enfermedades Neurodegenerativas/genética , Proteostasis/fisiología , Células de Purkinje/fisiología , Sinapsis/fisiología , Animales , Axones/patología , Axones/fisiología , Técnicas de Observación Conductual , Proteínas Portadoras/genética , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Noqueados , Neuronas Motoras/patología , Mutación , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Células de Purkinje/patología , Sinapsis/patología
7.
Hum Mol Genet ; 25(13): 2712-2727, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27162249

RESUMEN

Gaucher disease (GD) results from mutations in the acid ß-glucocerebrosidase (GCase) encoding gene, GBA, which leads to accumulation of glucosylceramides. GD patients and carriers of GD mutations have a significantly higher propensity to develop Parkinson disease (PD) in comparison to the non-GD population. In this study, we used the fruit fly Drosophila melanogaster to show that development of PD in carriers of GD mutations results from the presence of mutant GBA alleles. Drosophila has two GBA orthologs (CG31148 and CG31414), each of which has a minos insertion, which creates C-terminal deletion in the encoded GCase. Flies double heterozygous for the endogenous mutant GBA orthologs presented Unfolded Protein Response (UPR) and developed parkinsonian signs, manifested by death of dopaminergic cells, defective locomotion and a shorter life span. We also established transgenic flies carrying the mutant human N370S, L444P and the 84GG variants. UPR activation and development of parkinsonian signs could be recapitulated in flies expressing these three mutant variants.UPR and parkinsonian signs could be partially rescued by growing the double heterozygous flies, or flies expressing the N370S or the L444P human mutant GCase variants, in the presence of the pharmacological chaperone ambroxol, which binds and removes mutant GCase from the endoplasmic reticulum (ER). However flies expressing the 84GG mutant, that does not express mature GCase, did not exhibit rescue by ambroxol. Our results strongly suggest that the presence of a mutant GBA allele in dopaminergic cells leads to ER stress and to their death, and contributes to development of PD.


Asunto(s)
Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Ambroxol/metabolismo , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/metabolismo , Enfermedad de Gaucher/genética , Heterocigoto , Humanos , Mutación , Enfermedad de Parkinson/genética , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología
8.
Development ; 142(19): 3253-62, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26443630

RESUMEN

Apoptosis, in contrast to other forms of cell death such as necrosis, was originally regarded as a 'silent' mechanism of cell elimination designed to degrade the contents of doomed cells. However, during the past decade it has become clear that apoptotic cells can produce diverse signals that have a profound impact on neighboring cells and tissues. For example, apoptotic cells can release factors that influence the proliferation and survival of adjacent tissues. Apoptosis can also affect tissue movement and morphogenesis by modifying tissue tension in surrounding cells. As we review here, these findings reveal unexpected roles for apoptosis in tissue remodeling during development, as well as in regeneration and cancer.


Asunto(s)
Apoptosis/fisiología , Crecimiento y Desarrollo/fisiología , Morfogénesis/fisiología , Neoplasias/fisiopatología , Regeneración/fisiología , Transducción de Señal/fisiología , Animales , Autofagia/fisiología , Humanos , Necrosis/fisiopatología
9.
Genes Dev ; 24(20): 2282-93, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20952537

RESUMEN

Inhibitor of Apoptosis Proteins (IAPs) are frequently overexpressed in tumors and have become promising targets for developing anti-cancer drugs. IAPs can be inhibited by natural antagonists, but a physiological requirement of mammalian IAP antagonists remains to be established. Here we show that deletion of the mouse Sept4 gene, which encodes the IAP antagonist ARTS, promotes tumor development. Sept4-null mice have increased numbers of hematopoietic stem and progenitor cells, elevated XIAP protein, increased resistance to cell death, and accelerated tumor development in an Eµ-Myc background. These phenotypes are partially suppressed by inactivation of XIAP. Our results suggest that apoptosis plays an important role as a frontline defense against cancer by restricting the number of normal stem cells.


Asunto(s)
Apoptosis , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al GTP/metabolismo , Células Madre/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Recuento de Células , Células Cultivadas , Proteínas del Citoesqueleto/genética , Femenino , Citometría de Flujo , Proteínas de Unión al GTP/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Immunoblotting , Estimación de Kaplan-Meier , Tejido Linfoide/metabolismo , Tejido Linfoide/patología , Linfoma/genética , Linfoma/metabolismo , Linfoma/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Septinas , Células Madre/citología , Supresión Genética , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(38): 13960-5, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25201987

RESUMEN

Neuronal necrosis induced by calcium overload causes devastating brain dysfunction in diseases such as stroke and brain trauma. It has been considered a stochastic event lacking genetic regulation, and pharmacological means to suppress neuronal necrosis are lacking. Using a Drosophila model of calcium overloading, we found JIL-1/mitogen- and stress-activated protein kinase 1/2 is a regulator of neuronal necrosis through phosphorylation of histone H3 serine 28 (H3S28ph). Further, we identified its downstream events including displacement of polycomb repressive complex 1 (PRC1) and activation of Trithorax (Trx). To test the role of JIL-1/PRC1/Trx cascade in mammals, we studied the necrosis induced by glutamate in rat cortical neuron cultures and rodent models of brain ischemia and found the cascade is activated in these conditions and inhibition of the cascade suppresses necrosis in vitro and in vivo. Together, our research demonstrates that neuronal necrosis is regulated by a chromatin-modifying cascade, and this discovery may provide potential therapeutic targets and biomarkers for neuronal necrosis.


Asunto(s)
Calcio/metabolismo , Cromatina/metabolismo , Neuronas/metabolismo , Animales , Biomarcadores/metabolismo , Cromatina/patología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Histonas/genética , Histonas/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Necrosis , Neuronas/patología , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Int J Mol Sci ; 17(2): 27, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26861293

RESUMEN

Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated.


Asunto(s)
Drosophila melanogaster/metabolismo , Enterocitos/metabolismo , Ferritinas/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/genética , Ferritinas/química , Ferritinas/genética , Tracto Gastrointestinal/metabolismo , Expresión Génica , Genes Reporteros , Genotipo , Hierro/metabolismo , Larva , Modelos Biológicos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión
12.
J Cell Mol Med ; 19(9): 2181-92, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26033448

RESUMEN

Here, we report a novel mechanism of proteasome inhibition mediated by Thiostrepton (Thsp), which interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. We identified Thsp in a cell-based high-throughput screen using a fluorescent reporter sensitive to degradation by the ubiquitin-proteasome pathway. Thiostrepton behaves as a proteasome inhibitor in several paradigms, including cell-based reporters, detection of global ubiquitination status, and proteasome-mediated labile protein degradation. In vitro, Thsp does not block the chymotrypsin activity of the 26S proteasome. In a cell-based IκBα degradation assay, Thsp is a slow inhibitor and 4 hrs of treatment achieves the same effects as MG-132 at 30 min. We show that Thsp forms covalent adducts with proteins in human cells and demonstrate their nature by mass spectrometry. Furthermore, the ability of Thsp to interact covalently with the cysteine residues is essential for its proteasome inhibitory function. We further show that a Thsp modified peptide cannot be degraded by proteasomes in vitro. Importantly, we demonstrate that Thsp binds covalently to Rpt subunits of the 19S regulatory particle and forms bridges with a proteasome substrate. Taken together, our results uncover an important role of Thsp in 19S proteasome inhibition.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Subunidades de Proteína/metabolismo , Tioestreptona/farmacología , Genes Reporteros , Células HEK293 , Humanos , Modelos Moleculares , Inhibidores de Proteasoma/farmacología , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos
13.
Dev Biol ; 385(2): 350-65, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24144920

RESUMEN

The development of the Drosophila leg is a good model to study processes of pattern formation, cell death and segmentation. Such processes require the coordinate activity of different genes and signaling pathways that progressively subdivide the leg territory into smaller domains. One of the main pathways needed for leg development is the Notch pathway, required for determining the proximo-distal axis of the leg and for the formation of the joints that separate different leg segments. The mechanisms required to coordinate such events are largely unknown. We describe here that the zinc finger homeodomain-2 (zfh-2) gene is highly expressed in cells that will form the leg joints and needed to establish a correct size and pattern in the distal leg. There is an early requirement of zfh-2 to establish the correct proximo-distal axis, but zfh-2 is also needed at late third instar to form the joint between the fourth and fifth tarsal segments. The expression of zfh-2 requires Notch activity but zfh-2 is necessary, in turn, to activate Notch targets such as Enhancer of split and big brain. zfh-2 is controlled by the Drosophila activator protein 2 gene and regulates the late expression of tarsal-less. In the absence of zfh-2 many cells ectopically express the pro-apoptotic gene head involution defective, activate caspase-3 and are positive for acridine orange, indicating they undergo apoptosis. Our results demonstrate the key role of zfh-2 in the control of cell death and Notch signaling during leg development.


Asunto(s)
Apoptosis/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Receptores Notch/fisiología , Tarso Animal/citología , Dedos de Zinc , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Tarso Animal/crecimiento & desarrollo , Factores de Transcripción/fisiología
14.
BMC Genomics ; 16: 338, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25903460

RESUMEN

BACKGROUND: Dystonia1 (DYT1) dystonia is caused by a glutamic acid deletion (ΔE) mutation in the gene encoding Torsin A in humans (HTorA). To investigate the unknown molecular and cellular mechanisms underlying DYT1 dystonia, we performed an unbiased proteomic analysis. RESULTS: We found that the amount of proteins and transcripts of an Endoplasmic reticulum (ER) resident chaperone Heat shock protein cognate 3 (HSC3) and a mitochondria chaperone Heat Shock Protein 22 (HSP22) were significantly increased in the HTorA(ΔE)- expressing brains compared to the normal HTorA (HTorA(WT)) expressing brains. The physiological consequences included an increased susceptibility to oxidative and ER stress compared to normal HTorA(WT) flies. The alteration of transcripts of Inositol-requiring enzyme-1 (IRE1)-dependent spliced X box binding protein 1(Xbp1), several ER chaperones, a nucleotide exchange factor, Autophagy related protein 8b (ATG8b) and components of the ER associated degradation (ERAD) pathway and increased expression of the Xbp1-enhanced Green Fluorescence Protein (eGFP) in HTorA(ΔE) brains strongly indicated the activation of the unfolded protein response (UPR). In addition, perturbed expression of the UPR sensors and inducers in the HTorA(ΔE) Drosophila brains resulted in a significantly reduced life span of the flies. Furthermore, the types and quantities of proteins present in the anti-HSC3 positive microsomes in the HTorA(ΔE) brains were different from those of the HTorA(WT) brains. CONCLUSION: Taken together, these data show that HTorA(ΔE) in Drosophila brains may activate the UPR and increase the expression of HSP22 to compensate for the toxic effects caused by HTorA(ΔE) in the brains.


Asunto(s)
Drosophila/genética , Drosophila/metabolismo , Chaperonas Moleculares/metabolismo , Estrés Oxidativo , Respuesta de Proteína Desplegada , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Androstadienos/farmacología , Animales , Encéfalo/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Cromonas/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Electroforesis en Gel Bidimensional , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Morfolinas/farmacología , Estrés Oxidativo/genética , Espectrometría de Masas en Tándem , Respuesta de Proteína Desplegada/efectos de los fármacos , Wortmanina
15.
Adv Exp Med Biol ; 806: 443-51, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24952196

RESUMEN

Thiostrepton is a natural antibiotic produced by bacteria of Streptomyces genus. We identified Thiostrepton as a strong hit in a cell-based small molecule screen for DIAP1 stability modulators. It was shown previously that Thiostrepton induces upregulation of several gene products in Streptomyces lividans, including the TipAS and TipAL isoforms, and that it can induce apoptotic cell death in human cancer cells. Furthermore, it was suggested that thiostrepton induces oxidative and proteotoxic stress, as inferred from the transcriptional upregulation of stress-related genes and endoplasmic reticulum (ER) stress genes. We used a combination of biochemical and proteomics approaches to investigate the effect of Thiostrepton and other compounds in human cells. Our mass-spectrometry data and subsequent biochemical validation shows that Thiostrepton (and MG-132 proteasome inhibitor) trigger upregulation of heat shock proteins HspA1A, Hsp70, Hsp90α, or Hsp105 in various human cancer cells. We propose a model where Thiostrepton-induced proteasome inhibition leads to accumulation of protein aggregates that trigger a heat shock response and apoptosis in human cancer cells.


Asunto(s)
Antibacterianos , Apoptosis/efectos de los fármacos , Proteínas de Choque Térmico/biosíntesis , Respuesta al Choque Térmico/efectos de los fármacos , Proteínas de Neoplasias/biosíntesis , Neoplasias , Proteómica/métodos , Streptomyces lividans/química , Tioestreptona , Animales , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Tioestreptona/química , Tioestreptona/farmacocinética , Tioestreptona/farmacología , Regulación hacia Arriba/efectos de los fármacos
16.
EMBO J ; 28(9): 1296-307, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19339992

RESUMEN

The unfolded protein response (UPR) is a specific cellular process that allows the cell to cope with the overload of unfolded/misfolded proteins in the endoplasmic reticulum (ER). ER stress is commonly associated with degenerative pathologies, but its role in disease progression is still a matter for debate. Here, we found that mutations in the ER-resident chaperone, neither inactivation nor afterpotential A (NinaA), lead to mild ER stress, protecting photoreceptor neurons from various death stimuli in adult Drosophila. In addition, Drosophila S2 cultured cells, when pre-exposed to mild ER stress, are protected from H(2)O(2), cycloheximide- or ultraviolet-induced cell death. We show that a specific ER-mediated signal promotes antioxidant defences and inhibits caspase-dependent cell death. We propose that an immediate consequence of the UPR not only limits the accumulation of misfolded proteins but also protects tissues from harmful exogenous stresses.


Asunto(s)
Drosophila melanogaster/fisiología , Retículo Endoplásmico/fisiología , Degeneración Retiniana/metabolismo , Estrés Fisiológico/fisiología , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Peróxido de Hidrógeno/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiología , Mutación , Células Fotorreceptoras/citología , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras/metabolismo , Retina/citología , Retina/efectos de los fármacos , Retina/metabolismo , Degeneración Retiniana/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico/genética
17.
Development ; 137(10): 1679-88, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20392747

RESUMEN

Terminal differentiation of male germ cells in Drosophila and mammals requires extensive cytoarchitectural remodeling, the elimination of many organelles, and a large reduction in cell volume. The associated process, termed spermatid individualization, is facilitated by the apoptotic machinery, including caspases, but does not result in cell death. From a screen for genes defective in caspase activation in this system, we isolated a novel F-box protein, which we termed Nutcracker, that is strictly required for caspase activation and sperm differentiation. Nutcracker interacts through its F-box domain with members of a Cullin-1-based ubiquitin ligase complex (SCF): Cullin-1 and SkpA. This ubiquitin ligase does not regulate the stability of the caspase inhibitors DIAP1 and DIAP2, but physically binds Bruce, a BIR-containing giant protein involved in apoptosis regulation. Furthermore, nutcracker mutants disrupt proteasome activity without affecting their distribution. These findings define a new SCF complex required for caspase activation during sperm differentiation and highlight the role of regulated proteolysis during this process.


Asunto(s)
Caspasas/metabolismo , Diferenciación Celular/genética , Proteínas de Drosophila/fisiología , Drosophila/genética , Proteínas F-Box/fisiología , Espermatozoides/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Diferenciación Celular/fisiología , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Activación Enzimática/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Modelos Biológicos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Espermatozoides/metabolismo , Espermatozoides/ultraestructura , Testículo/metabolismo , Testículo/fisiología
18.
Dev Biol ; 351(1): 128-34, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21215264

RESUMEN

We report a new two-color fluorescent imaging system to visualize the mosaic adult photoreceptor neurons (PRs) in real-time. Using this method, we examined a collection of 434 mutants and identified genes required for PR survival, planar cell polarity (PCP), patterning and differentiation. We could track the progression of PR degeneration in living flies. By introducing the expression of p35, a caspase inhibitor, we found mutations that specifically activate caspase-dependent death. Moreover, we showed that grh is required in R3 for correct PCP establishment. The "Tomato/GFP-FLP/FRT" method allows high-throughput, rapid and precise identification of survival and developmental pathways in living adult PRs at single-cell resolution.


Asunto(s)
Apoptosis , Drosophila/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Animales , Polaridad Celular , Supervivencia Celular , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Fluorescencia , Mutación , Factores de Transcripción/fisiología
19.
Nat Commun ; 13(1): 4628, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941116

RESUMEN

The presence of distinct stem cells that maintain the interfollicular epidermis is highly debated. Here, we report a population of keratinocytes, marked by Thy1, in the basal layer of the interfollicular epidermis. We find that epidermal cells expressing differential levels of Thy1 display distinct transcriptional signatures. Thy1+ keratinocytes do not express T cell markers, express a unique transcriptional profile, cycle significantly slower than basal epidermal progenitors and display significant expansion potential in vitro. Multicolor lineage tracing analyses and mathematical modeling reveal that Thy1+ basal keratinocytes do not compete neutrally alike interfollicular progenitors and contribute long-term to both epidermal replenishment and wound repair. Importantly, ablation of Thy1+ cells strongly impairs these processes, thus indicating the non-redundant function of Thy1+ stem cells in the epidermis. Collectively, these results reveal a distinct stem cell population that plays a critical role in epidermal homeostasis and repair.


Asunto(s)
Células Epidérmicas , Células Madre , Animales , Diferenciación Celular/fisiología , Epidermis/metabolismo , Queratinocitos/metabolismo , Ratones , Células Madre/metabolismo
20.
Curr Opin Genet Dev ; 17(4): 294-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17629474

RESUMEN

The patterning and development of multicellular organisms require a precisely controlled balance between cell proliferation, differentiation and death. The regulation of apoptosis is an important aspect to achieve this balance, by eliminating unnecessary or mis-specified cells which, otherwise, may have harmful effects on the whole organism. Apoptosis is also important for the morphogenetic processes that occur during development and that lead to the sculpting of organs and other body structures. Here, we review recent progress in understanding how apoptosis is regulated during development, focusing on studies using Drosophila or Caenorhabditis elegans as model organisms.


Asunto(s)
Apoptosis/fisiología , Tipificación del Cuerpo/fisiología , Transducción de Señal/fisiología , Animales , Apoptosis/genética , Tipificación del Cuerpo/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Drosophila/genética , Drosophila/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA